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Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #12 – Other Spatial Styles
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Quick Points
• HW #3 coming out today

• Due Tuesday, October 17 (midnight)
• Systolic computing structures
• Systolic mapping
• Logic partitioning
• FPGA synthesis
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Project Proposals

• Due Sunday, 10/8 at midnight
• Purpose – to provide a background and 

overview of the project
• Goal – allow me to understand what you are 

intending to do

• Project topic:
• Perform an in-depth exploration of some area of 

reconfigurable computing
• Whatever topic you choose, you must include a 

strong experimental element in your project
• Work in groups of 2+ (3 if very lofty proposal)
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Project Proposals (cont.)

• Suggested structure [3-4 pages, IEEE conf. format]
• Introduction – what is the context for this work? What 

problem are you trying to address? Why is it 
interesting/challenging?

• Prior work – what is the related work? How does your 
work differ from these? (5-10 references)

• Approach – how are you going to tackle the problem? 
What tools and methodologies do you intend on using? 
What experiments do you intend on running?

• Expected results – what do you expect the outcome of 
your project to be? What are the deliverables? How do 
you intend on presenting your results?

• Milestones – what is your expected progress 
schedule? Provide a weekly / bi-weekly basis

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.5

Systolic Architectures

• Goal – general methodology for mapping 
computations into hardware (spatial computing) 
structures

• Composition:
• Simple compute cells (e.g. add, sub, max, min)
• Regular interconnect pattern
• Pipelined communication between cells
• I/O at boundaries

xx + x min

x c
CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.6

Example – Finite Impulse Response

• A Finite Impulse Response (FIR) filter is a type of 
digital filter
• Finite – response to an impulse eventually settles 

to zero
• Requires no feedback
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for (i=1; i<=n; i++)
for (j=1; j <=k; j++)
y[i] += w[j] * x[i+j-1];
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Finite Impulse Response (cont.)
• Sequential

• Memory bandwidth 
per output – 2k+1

• O(k) cycles per 
output

• O(1) hardware
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• Systolic
• Memory bandwidth 

per output – 2
• O(1) cycles per 

output
• O(k) hardware
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Example – Matrix-Vector Product

 

  
   
 
 

      

  
   
 
 

  

        
                    

        
        

2

1

2

1

21

22221

11211

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnnnn

n

n

y

y
y

x

x
x

aaa

aaa
aaa

MM

L

MMM

L

L

for (i=1; i<=n; i++) 
for (j=1; j<=n; j++)
y[i] += a[i][j] * x[j];
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Matrix-Vector Product (cont.)
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Outline

• Project Proposals
• Recap
• Non-Numeric Systolic Examples
• Systolic Loop Transformations

• Data dependencies
• Iteration spaces
• Example transformations

• Reading – Cellular Automata
• Reading – Bit-Serial Architectures
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Example – Relational Database

• Relation is a collection of tuples that all have 
the same attributes 
• Tuple is a fixed number of objects
• Represented in a table

tuple # Name School Age QB Rating

0 D. Carr Fresno State 27 113.6

1 P. Rivers NC State 24 107.4

2 D. McNabb Syracuse 29 105.3

3 C. Pennington Marshall 30 103.4

4 R. Grossman Florida 26 100.9
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• Intersection: A ∩ B – all records in both relation 
A and B

• Must compare all |A| x |B| tuples
• Compare via sequence compare

• Or along row or column to get inclusion 
bitvector

Database Operations
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Database Operations (cont.)
• Tuple Comparison

• Problem – tuples are long, comparison time might limit 
computation rate

• Strategy – perform comparison in pipelined manner by 
fields

• Stagger fields
• Arrange to compute field i on cycle after i-1 

• Cell: tout = tin and ain xnor bin

True

B[j,1]
B[j,2]

B[j,3]
B[j,4]

A[i,1]
A[i,2]

A[i,3] A[i,4]
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Database Intersection
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Database Intersection (cont.)
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Database Operations (cont.)

• Unique: remove duplicate elements in multirelation A
• Intersect A with A

• Union: A U B – one copy of all tuples in A and B
• Concatenate A and B
• Use Unique to remove duplicates

• Projection: collapse A by removing select fields of 
every tuple
• Sample fields in A’
• Use Unique to remove duplicates
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Database Join

• Join: AJCA,CB
B – where columns CA in A

intersect columns CB in B, concatenate tuple Ai
and Bj
• Match CA of A with CB of B
• Keep all Ti,j

• Filter i,j for which Ti,j = true
• Construct join from matched pairs

• Claim: Typically, | AJCA,CB
B | << | A | | B |
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Database Summary

• Input database – O(n) data
• Operations require O(n2) data

• O(n) if sorted first
• O(n log(n)) to sort

• Systolic implementation – works on O(n) processing 
elements in O(n) time

• Typical database [KunLoh80A]:
• 1500 bit tuples
• 10,000 records in a relation
• ~1 4-LUT per bit-compare

• ~1600 XC4062 FPGAs
• ~84 XC4LX200 FPGAs
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Systolic Loop Transformations

• Automatically re-structure code for
• Parallelism
• Locality

• Driven by dependency analysis
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Defining Dependencies

• Flow Dependence
• Anti-Dependence
• Output Dependence
• Input Dependence

S1) a = 0;
S2) b = a;
S3) c = a + d + e;
S4) d = b;
S5) b = 5+e

W R    δf

R W    δa

W W   δo

R R    δi

true

false
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Example Dependencies

S1) a = 0;
S2) b = a;
S3) c = a + d + e;
S4) d = b;
S5) b = 5+e S1 δf S2     due to a

S1 δf S3     due to a
S2 δf S4     due to b
S3 δa S4     due to d
S4 δa S5     due to b
S2 δo S5     due to b
S3 δi S5     due to e

2

3

4

5

1
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Data Dependencies in Loops

• Dependence can flow across iterations of the 
loop

• Dependence information is annotated with 
iteration information

• If dependence is across iterations it is loop 
carried otherwise loop independent

for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

}

δf loop 
carried

δf loop 
independent
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Unroll Loop to Find Dependencies
for (i=0; i<n; i++) {

A[i] = B[i];
B[i+1] = A[i];

}

δf loop 
carried

δf loop 
independent

A[0] = B[0];
B[1] = A[0];
A[1] = B[1];
B[2] = A[1];
A[2] = B[2];
B[3] = A[2];

...

i = 0

i = 1

i = 2

Distance/direction 
of dependence is 

also important
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Thought Exercise

• Consider the Laplace Transformation:

• In teams of two, try to determine the flow dependencies, anti 
dependencies, output dependencies, and input dependencies
• Use loop unrolling to find dependencies

• Most dependencies found gets a prize

∫
∞ −==

0
 )(    )(    )( dttfssFfL st

for (i=1; i<N; i++)
for (j=1; j<N; j++)
c = -4*a[i][j] + a[i-1][j] + a[i+1][j];
c += a[i][j+1] + a[i][j+1]
b[i][j] = c;

}
}
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Iteration Space

• Every iteration generates a point in an n-dimensional 
space, where n is the depth of the loop nest

for (i=0; i<n; i++) {

...
}

for (i=0; i<n; i++) {
for (j=0; j<5; j++) {

...
}

}

[3; 2]

[4]
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Distance Vectors
for (i=0; i<n; i++) {

A[i] = B[i];
B[i+1] = A[i];

}

A[0] = B[0];
B[1] = A[0];
A[1] = B[1];
B[2] = A[1];
A[2] = B[2];
B[3] = A[2];

...

i = 0

i = 1

i = 2

Distance vector is 
the difference 

between the target 
and source iterations

d = It - Is

Exactly the distance of 
the dependence, i.e.,

Is +d = It
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A0,1=  =A0,1
B0,2=  =B0,1
C1,1=  =C0,2

A0,1=  =A0,1
B0,2=  =B0,1
C1,1=  =C0,2

for (i=0; i<n; i++) {
for (j=0; j<m; j++) {

A[i,j] =   ;
= A[i,j]; 

B[i,j+1] =  ;
= B[i,j];

C[i+1,j] =  ;
= C[i,j+1];

}

Distance Vectors Example

A0,2=  =A0,2
B0,3=  =B0,2
C1,2=  =C0,3

A1,2=  =A1,2
B1,3=  =B1,2
C2,2=  =C1,3

A2,2=  =A2,2
B2,3=  =B2,2
C3,2=  =C2,3

A1,1=  =A1,1
B1,2=  =B1,1
C2,1=  =C1,2

A2,1=  =A2,1
B2,2=  =B2,1
C3,1=  =C2,2

A0,0=  =A0,0
B0,1=  =B0,0
C1,0=  =C0,1

A1,0=  =A1,0
B1,1=  =B1,0
C2,0=  =C1,1

A2,0=  =A2,0
B2,1=  =B2,0
C3,0=  =C2,1

j

i

A0,2=  =A0,2
B0,3=  =B0,2
C1,2=  =C0,3

A1,1=  =A1,1
B1,2=  =B1,1
C2,1=  =C1,2

A0,0=  =A0,0
B0,1=  =B0,0
C1,0=  =C0,1

A2,0=  =A2,0
B2,1=  =B2,0
C3,0=  =C2,1

B yields [0; 1]
A yields [0; 0]

C yields [1; -1]
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FIR Distance Vectors

for (i=0; i<n; i++)
for (j=0; j<m; j++)

Y[i] = Y[i]+X[i+j]*W[j];

Y yields: δa [0; 0]

Y yields: δf [0; 1]

X yields: δi [1; -1]

W yields: δi [1; 0]

Y0= 
=Y0
=X3
=W3

Y1= 
=Y1
=X4
=W3

Y2= 
=Y2
=X5
=W3

Y3= 
=Y3
=X6
=W3

Y0= 
=Y0
=X2
=W2

Y1= 
=Y1
=X3
=W2

Y2= 
=Y2
=X4
=W2

Y3= 
=Y3
=X5
=W2

Y0=
=Y0
=X1
=W1

Y1= 
=Y1
=X2
=W1

Y2= 
=Y2
=X3
=W1

Y3= 
=Y3
=X4
=W1

Y0= 
=Y0
=X0
=W0

Y1= 
=Y1
=X1
=W0

Y2= 
=Y2
=X2
=W0

Y3= 
=Y3
=X3
=W0
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Re-label / Pipeline Variables

• Remove anti-dependencies and input 
dependencies by relabeling or pipelining 
variables

• Creates new flow dependencies
• Removes anti/input dependencies

for (i=0; i<n; i++) {
for (j=0; j<m; j++) {

Wi[j] = Wi-1[j];
Xi[i+j]=Xi-1[i+j];
Yj[i] = Yj-1[i]+Xi[i+j]*Wi[j];

}
}

⎥
⎦

⎤
⎢
⎣

⎡
=

  1- 0  1  
  1  1  0  

D

Y W X

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.30

FIR Dependencies

Y2
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X0
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0
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0
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1
X1
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1
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0
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X2
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Transforming to Time and Space

• Using data dependencies, find T
• T defines a mapping of the iteration space into 

a time component π, and a space component, 
S

• T = [π; S]
• If π·I1 = π·I2, then I1 and I2 execute at the same 

time
• π·d – amount of time units to move data items 

(π·d > 0)
• Any S can be picked that makes T a bijection

• See [Mol83A] for more details
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Calculating T for FIR

• For π = [p1 p2]
• Since π·d > 0, we see that:

• p2 != 0 (from Y)
• p1 != 0 (from W)
• p1 > p2 (from X)

• Smallest solution π = [2 1]
• S can be [1 0], [0 1], [1 1]
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An Example Transformation

Space

Ti
m

e
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An Example Transformation (cont.)
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Summary

• Non-numeric (database ops) example of 
systolic computing
• Multiple use of each input data item
• Concurrency
• Regular data and control flow

• Loop transformations
• Data dependency analysis
• Restructure code for parallelism, locality


