
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #12 – Other Spatial Styles

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.2

Quick Points
• HW #3 coming out today

• Due Tuesday, October 17 (midnight)
• Systolic computing structures
• Systolic mapping
• Logic partitioning
• FPGA synthesis

Priority: 1

Breathing,
Eating, etc.

Priority: 14

“Desperate
Housewives”

Priority: 6

Night out in
Campustown

Priority: 45

Other
Work

… … …

Priority: 74

CprE 583
Homework

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.3

Project Proposals

• Due Sunday, 10/8 at midnight
• Purpose – to provide a background and

overview of the project
• Goal – allow me to understand what you are

intending to do

• Project topic:
• Perform an in-depth exploration of some area of

reconfigurable computing
• Whatever topic you choose, you must include a

strong experimental element in your project
• Work in groups of 2+ (3 if very lofty proposal)

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.4

Project Proposals (cont.)

• Suggested structure [3-4 pages, IEEE conf. format]
• Introduction – what is the context for this work? What

problem are you trying to address? Why is it
interesting/challenging?

• Prior work – what is the related work? How does your
work differ from these? (5-10 references)

• Approach – how are you going to tackle the problem?
What tools and methodologies do you intend on using?
What experiments do you intend on running?

• Expected results – what do you expect the outcome of
your project to be? What are the deliverables? How do
you intend on presenting your results?

• Milestones – what is your expected progress
schedule? Provide a weekly / bi-weekly basis

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.5

Systolic Architectures

• Goal – general methodology for mapping
computations into hardware (spatial computing)
structures

• Composition:
• Simple compute cells (e.g. add, sub, max, min)
• Regular interconnect pattern
• Pipelined communication between cells
• I/O at boundaries

xx + x min

x c
CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.6

Example – Finite Impulse Response

• A Finite Impulse Response (FIR) filter is a type of
digital filter
• Finite – response to an impulse eventually settles

to zero
• Requires no feedback

∑
=

−+

−++

⋅=

⋅++⋅+⋅=
k

j
jii

kikiii

xw

xwxwxwy

1
1

1121

L

for (i=1; i<=n; i++)
for (j=1; j <=k; j++)
y[i] += w[j] * x[i+j-1];

2

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.7

Finite Impulse Response (cont.)
• Sequential

• Memory bandwidth
per output – 2k+1

• O(k) cycles per
output

• O(1) hardware

x

+

xi

w1 x

+

w2 x

+

w3 x

+

w4

yi

• Systolic
• Memory bandwidth

per output – 2
• O(1) cycles per

output
• O(k) hardware

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.8

Example – Matrix-Vector Product

2

1

2

1

21

22221

11211

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

nnnnnn

n

n

y

y
y

x

x
x

aaa

aaa
aaa

MM

L

MMM

L

L

for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
y[i] += a[i][j] * x[j];

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.9

Matrix-Vector Product (cont.)

t = 3

t = 2

t = 1

t = 4

a31

a21

a11

a41

a22

a12

–

a23

a13

–

–

a23

–

–

–

a14

x1 x2 x3 x4
y2

y3

y4

y1

t = n+1

t = n+2

t = n+3

t = nxn…

–

–

–

–

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.10

Outline

• Project Proposals
• Recap
• Non-Numeric Systolic Examples
• Systolic Loop Transformations

• Data dependencies
• Iteration spaces
• Example transformations

• Reading – Cellular Automata
• Reading – Bit-Serial Architectures

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.11

Example – Relational Database

• Relation is a collection of tuples that all have
the same attributes
• Tuple is a fixed number of objects
• Represented in a table

tuple # Name School Age QB Rating

0 D. Carr Fresno State 27 113.6

1 P. Rivers NC State 24 107.4

2 D. McNabb Syracuse 29 105.3

3 C. Pennington Marshall 30 103.4

4 R. Grossman Florida 26 100.9

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.12

• Intersection: A ∩ B – all records in both relation
A and B

• Must compare all |A| x |B| tuples
• Compare via sequence compare

• Or along row or column to get inclusion
bitvector

Database Operations

B1

A1 T11

A2 T21

A3 T31

B2

T12

T22

T32

B3

T13

T23

T33

A1

A2

A3

B3

B2

B1

T12

T21

3

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.13

Database Operations (cont.)
• Tuple Comparison

• Problem – tuples are long, comparison time might limit
computation rate

• Strategy – perform comparison in pipelined manner by
fields

• Stagger fields
• Arrange to compute field i on cycle after i-1

• Cell: tout = tin and ain xnor bin

True

B[j,1]
B[j,2]

B[j,3]
B[j,4]

A[i,1]
A[i,2]

A[i,3] A[i,4]
CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.14

Database Intersection

b51
a21True

True

True

True

True

True

True

b52
b43
a13

b44

b42
a22

b34
a14

b41
a31

b33
a23

b31
a41

b23
a23

b21
a51

b13
a43

b32
a32

b24
a24

b22
a42

b14
a34

a52 a44

T12

T21

T22

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.15

Database Intersection (cont.)

b51
a21True

True

True

True

True

True

True

b52
b43
a13

b44

b42
a22

b34
a14

b41
a31

b33
a23

b31
a41

b23
a23

b21
a51

b13
a43

b32
a32

b24
a24

b22
a42

b14
a34

a52 a44

OR

FALSE

OR

OR

OR

OR

OR

OR

T3

T2

T1

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.16

Database Operations (cont.)

• Unique: remove duplicate elements in multirelation A
• Intersect A with A

• Union: A U B – one copy of all tuples in A and B
• Concatenate A and B
• Use Unique to remove duplicates

• Projection: collapse A by removing select fields of
every tuple
• Sample fields in A’
• Use Unique to remove duplicates

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.17

Database Join

• Join: AJCA,CB
B – where columns CA in A

intersect columns CB in B, concatenate tuple Ai
and Bj
• Match CA of A with CB of B
• Keep all Ti,j

• Filter i,j for which Ti,j = true
• Construct join from matched pairs

• Claim: Typically, | AJCA,CB
B | << | A | | B |

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.18

Database Summary

• Input database – O(n) data
• Operations require O(n2) data

• O(n) if sorted first
• O(n log(n)) to sort

• Systolic implementation – works on O(n) processing
elements in O(n) time

• Typical database [KunLoh80A]:
• 1500 bit tuples
• 10,000 records in a relation
• ~1 4-LUT per bit-compare

• ~1600 XC4062 FPGAs
• ~84 XC4LX200 FPGAs

4

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.19

Systolic Loop Transformations

• Automatically re-structure code for
• Parallelism
• Locality

• Driven by dependency analysis

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.20

Defining Dependencies

• Flow Dependence
• Anti-Dependence
• Output Dependence
• Input Dependence

S1) a = 0;
S2) b = a;
S3) c = a + d + e;
S4) d = b;
S5) b = 5+e

W R δf

R W δa

W W δo

R R δi

true

false

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.21

Example Dependencies

S1) a = 0;
S2) b = a;
S3) c = a + d + e;
S4) d = b;
S5) b = 5+e S1 δf S2 due to a

S1 δf S3 due to a
S2 δf S4 due to b
S3 δa S4 due to d
S4 δa S5 due to b
S2 δo S5 due to b
S3 δi S5 due to e

2

3

4

5

1

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.22

Data Dependencies in Loops

• Dependence can flow across iterations of the
loop

• Dependence information is annotated with
iteration information

• If dependence is across iterations it is loop
carried otherwise loop independent

for (i=0; i<n; i++) {
A[i] = B[i];
B[i+1] = A[i];

}

δf loop
carried

δf loop
independent

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.23

Unroll Loop to Find Dependencies
for (i=0; i<n; i++) {

A[i] = B[i];
B[i+1] = A[i];

}

δf loop
carried

δf loop
independent

A[0] = B[0];
B[1] = A[0];
A[1] = B[1];
B[2] = A[1];
A[2] = B[2];
B[3] = A[2];

...

i = 0

i = 1

i = 2

Distance/direction
of dependence is

also important

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.24

Thought Exercise

• Consider the Laplace Transformation:

• In teams of two, try to determine the flow dependencies, anti
dependencies, output dependencies, and input dependencies
• Use loop unrolling to find dependencies

• Most dependencies found gets a prize

∫
∞ −==

0
)()()(dttfssFfL st

for (i=1; i<N; i++)
for (j=1; j<N; j++)
c = -4*a[i][j] + a[i-1][j] + a[i+1][j];
c += a[i][j+1] + a[i][j+1]
b[i][j] = c;

}
}

5

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.25

Iteration Space

• Every iteration generates a point in an n-dimensional
space, where n is the depth of the loop nest

for (i=0; i<n; i++) {

...
}

for (i=0; i<n; i++) {
for (j=0; j<5; j++) {

...
}

}

[3; 2]

[4]

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.26

Distance Vectors
for (i=0; i<n; i++) {

A[i] = B[i];
B[i+1] = A[i];

}

A[0] = B[0];
B[1] = A[0];
A[1] = B[1];
B[2] = A[1];
A[2] = B[2];
B[3] = A[2];

...

i = 0

i = 1

i = 2

Distance vector is
the difference

between the target
and source iterations

d = It - Is

Exactly the distance of
the dependence, i.e.,

Is +d = It

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.27

A0,1= =A0,1
B0,2= =B0,1
C1,1= =C0,2

A0,1= =A0,1
B0,2= =B0,1
C1,1= =C0,2

for (i=0; i<n; i++) {
for (j=0; j<m; j++) {

A[i,j] = ;
= A[i,j];

B[i,j+1] = ;
= B[i,j];

C[i+1,j] = ;
= C[i,j+1];

}

Distance Vectors Example

A0,2= =A0,2
B0,3= =B0,2
C1,2= =C0,3

A1,2= =A1,2
B1,3= =B1,2
C2,2= =C1,3

A2,2= =A2,2
B2,3= =B2,2
C3,2= =C2,3

A1,1= =A1,1
B1,2= =B1,1
C2,1= =C1,2

A2,1= =A2,1
B2,2= =B2,1
C3,1= =C2,2

A0,0= =A0,0
B0,1= =B0,0
C1,0= =C0,1

A1,0= =A1,0
B1,1= =B1,0
C2,0= =C1,1

A2,0= =A2,0
B2,1= =B2,0
C3,0= =C2,1

j

i

A0,2= =A0,2
B0,3= =B0,2
C1,2= =C0,3

A1,1= =A1,1
B1,2= =B1,1
C2,1= =C1,2

A0,0= =A0,0
B0,1= =B0,0
C1,0= =C0,1

A2,0= =A2,0
B2,1= =B2,0
C3,0= =C2,1

B yields [0; 1]
A yields [0; 0]

C yields [1; -1]

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.28

FIR Distance Vectors

for (i=0; i<n; i++)
for (j=0; j<m; j++)

Y[i] = Y[i]+X[i+j]*W[j];

Y yields: δa [0; 0]

Y yields: δf [0; 1]

X yields: δi [1; -1]

W yields: δi [1; 0]

Y0=
=Y0
=X3
=W3

Y1=
=Y1
=X4
=W3

Y2=
=Y2
=X5
=W3

Y3=
=Y3
=X6
=W3

Y0=
=Y0
=X2
=W2

Y1=
=Y1
=X3
=W2

Y2=
=Y2
=X4
=W2

Y3=
=Y3
=X5
=W2

Y0=
=Y0
=X1
=W1

Y1=
=Y1
=X2
=W1

Y2=
=Y2
=X3
=W1

Y3=
=Y3
=X4
=W1

Y0=
=Y0
=X0
=W0

Y1=
=Y1
=X1
=W0

Y2=
=Y2
=X2
=W0

Y3=
=Y3
=X3
=W0

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.29

Re-label / Pipeline Variables

• Remove anti-dependencies and input
dependencies by relabeling or pipelining
variables

• Creates new flow dependencies
• Removes anti/input dependencies

for (i=0; i<n; i++) {
for (j=0; j<m; j++) {

Wi[j] = Wi-1[j];
Xi[i+j]=Xi-1[i+j];
Yj[i] = Yj-1[i]+Xi[i+j]*Wi[j];

}
}

⎥
⎦

⎤
⎢
⎣

⎡
=

 1- 0 1
 1 1 0

D

Y W X

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.30

FIR Dependencies

Y2
0= =Y1

0
X0

2= =X-1
2

W0
2= =W-1

2

⎥
⎦

⎤
⎢
⎣

⎡
=

 1- 0 1
 1 1 0

D

Y W X

Y2
1= =Y1

1
X1

3= =X0
3

W1
2= =W0

2

Y2
2= =Y1

2
X2

4= =X1
4

W2
2= =W1

2

Y1
0= =Y0

0
X0

1= =X-1
1

W0
1= =W-1

1

Y1
1= =Y0

1
X1

2= =X0
2

W1
1= =W0

1

Y1
2= =Y0

2
X2

3= =X1
3

W2
1= =W1

1

Y0
0= =Y-1

0
X0

0= =X-1
0

W0
0= =W-1

0

Y0
1= =Y-1

1
X1

1= =X0
1

W0
2= =W0

0

Y0
2= =Y-1

2
X2

2= =X1
2

W2
0= =W1

0

j

i

6

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.31

Transforming to Time and Space

• Using data dependencies, find T
• T defines a mapping of the iteration space into

a time component π, and a space component,
S

• T = [π; S]
• If π·I1 = π·I2, then I1 and I2 execute at the same

time
• π·d – amount of time units to move data items

(π·d > 0)
• Any S can be picked that makes T a bijection

• See [Mol83A] for more details

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.32

Calculating T for FIR

• For π = [p1 p2]
• Since π·d > 0, we see that:

• p2 != 0 (from Y)
• p1 != 0 (from W)
• p1 > p2 (from X)

• Smallest solution π = [2 1]
• S can be [1 0], [0 1], [1 1]

⎥
⎦

⎤
⎢
⎣

⎡
=

 1- 0 1
 1 1 0

D

Y W X

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.33

An Example Transformation

Space

Ti
m

e

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(0,4) (1,4) (2,4) (3,4)

⎥
⎦

⎤
⎢
⎣

⎡
=

 1- 0 1
 1 1 0

D

Y W X

XY

W

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.34

An Example Transformation (cont.)

⎥
⎦

⎤
⎢
⎣

⎡
+
+

=⎥
⎦

⎤
⎢
⎣

⎡
⋅

ji
 j2i

j
i

T

⎥
⎦

⎤
⎢
⎣

⎡
=⋅

 0 1 1
 1 2 1

DT

⎥
⎦

⎤
⎢
⎣

⎡
=

1 1
 1 2

T

Space

Ti
m

e

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(0,4) (1,4) (2,4) (3,4)

XY

W

Y W X

CprE 583 – Reconfigurable ComputingSeptember 28, 2006 Lect-12.35

Summary

• Non-numeric (database ops) example of
systolic computing
• Multiple use of each input data item
• Concurrency
• Regular data and control flow

• Loop transformations
• Data dependency analysis
• Restructure code for parallelism, locality

