
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #13 – FPGA Synthesis

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.2

Quick Points
• Upcoming Deadlines

• Project proposals – Sunday, October 8
• Not all groups accounted for

• Midterm – Thursday, October 12
• Assigned next week Tuesday (following conceptual

review in class)
• Short, not a homework

• HW #3 – Tuesday, October 17

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.3

Synthesis

syn·the·sis (sin’thu-sis) n. – the combining of
the constituent elements of separate material
or abstract entities into a single or unified entity

• For hardware, the “abstract entity” is a circuit
description

• “Unified entity” is a hardware implementation
• Hardware compilation (but not really)

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.4

FPGA Synthesis

• The term “synthesis” has become overloaded
in the FPGA world

• Examples:
• System synthesis
• Behavioral / high-level / algorithmic synthesis
• RT-level synthesis
• Logic synthesis
• Physical synthesis

• Our usage: FPGA synthesis = behavioral
synthesis + logic synthesis + physical synthesis

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.5

Logic Synthesis

• Input – Boolean description
• Goal – to develop an optimized circuit

representation based on the logic design
• Boolean expressions are converted into a circuit

representation (gates)
• Takes into consideration speed/area/power

requirements of the original design

• For FPGA, need to map to LUTs instead of
logic gates (technology mapping)

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.6

Behavioral Synthesis

• Inputs
• Control and data flow graph (CDFG)
• Cell library

• Ex: fast adder, slow adder, multiplier, etc.
• Speed/area/power characteristics

• Constraints
• Total speed/area/power

• Output
• Datapath and control to implement

2

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.7

Outline

• Quick Points
• Introduction
• FPGA Design Flow
• Logic Synthesis
• FPGA Technology Mapping
• Behavioral Synthesis

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.8

FPGA Design Translation

• CAD to translate circuit from text description to
physical implementation well understood

• Most current FPGA designers use register-
transfer level specification (allocation and
scheduling)

• Same basic steps as ASIC design

RTL

.

.
C = A+B

.

Circuit

A
B

+ C

Array

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.9

FPGA Circuit Compilation
• Technology Mapping

• Placement

• Routing

LUT

LUT

Assign a logical LUT to a physical location

Select wire segments and
switches for interconnection

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.10

Standard FPGA Design Flow

• Design Entry
• Synthesis

• Design abstracted as a list of operations and dependencies
• Transformed into state diagrams and then logic networks

(netlist)
• Design Implementation

• Translate – merges multiple design files into a single netlist
• Map – groups logical components from netlist into IOBs and

CLBs
• Place & Route – place components on the FPGA and

connect them
• Device File Programming

• Generates a bitstream containing CLB/IOB configuration and
routing information to be directly loaded onto the FPGA

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.11

FPGA Design Flow (Xilinx)

Design Entry

Synthesis

Implementation

Device
Programming

Functional
Simulation

Timing
Simulation

HDL files,
schematics

EDIF/XNF
netlist

NGD Xilinx
primitives file

FPGA bitstream

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.12

Design Flow with Test
Design and implement a simple unit permitting to speed
up encryption with RC5-similar cipher with fixed key set
on 8031 microcontroller. Unlike in the experiment 5, this
time your unit has to be able to perform an encryption
algorithm by itself, executing 32 rounds…..

Library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity RC5_core is
port(

clock, reset, encr_decr: in std_logic;
data_input: in std_logic_vector(31 downto 0);
data_output: out std_logic_vector(31 downto 0);
out_full: in std_logic;
key_input: in std_logic_vector(31 downto 0);
key_read: out std_logic;

);
end RC5_core;

Specification

VHDL
description

Functional simulation

Post-synthesis simulationSynthesized
Circuit

3

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.13

Design Flow with Test (cont.)

Implementation

Configuration

Timing simulation

On chip testing

Post-synthesis simulationSynthesized
Circuit

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.14

Synthesis Tools
• Interpret RTL code
• Produce synthesized circuit netlist in a standard EDIF

format
• Give preliminary performance estimates
• Display circuit schematic corresponding to EDIF netlist

Performance Summary

Worst slack in design: -0.924

Requested Estimated Requested Estimated
Clock Clock

Starting Clock Frequency Frequency Period Period
Slack Type Group

exam1|clk 85.0 MHz 78.8 MHz 11.765 12.688 -0.924
inferred Inferred_clkgroup_0

System 85.0 MHz 86.4 MHz 11.765 11.572 0.193
system default_clkgroup

===

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.15

Implementation

Implementation

UCF

NGD

EDIF NCF

Native Generic Database file

Constraint Editor

User Constraint File

Native
Constraint

File

Electronic Design
Interchange Format

Circuit netlist Timing Constraints

Synthesis

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.16

Circuit Netlist and Mapping

LUT2

LUT3

LUT4

LUT5
FF1

FF2

LUT1

LUT0

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.17

Placing and Routing

Programmable Connections

FPGA

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.18

Place and Route Report

Timing Score: 0

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

--
Constraint | Requested | Actual | Logic

| | | Levels
--
TS_clk = PERIOD TIMEGRP "clk" 11.765 ns | 11.765ns | 11.622ns | 13
HIGH 50% | | |

--
OFFSET = OUT 11.765 ns AFTER COMP "clk" | 11.765ns | 11.491ns | 1

--
OFFSET = IN 11.765 ns BEFORE COMP "clk" | 11.765ns | 11.442ns | 2

--

4

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.19

Configuration

• Once a design is implemented, you must create a file
that the FPGA can understand
• This file is called a bit stream: a BIT file (.bit extension)

• The BIT file can be downloaded directly to the FPGA,
or can be converted into a PROM file which stores the
programming information

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.20

Logic Synthesis

• Syntax-based translation
• Translate HDL into logic directly (ab + ac)
• Generally requires optimization

• Macros
• Pre-designed logic
• Generally identified by language features

• Hard macro: includes placement
• Soft macro: no placement

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.21

Logic Synthesis Phases

• Technology-independent optimizations
• Works on Boolean expression equivalent
• Estimates size based on number of literals
• Uses factorization, resubstitution, minimization to

optimize logic
• Technology-independent phase uses simple delay

models
• Technology-dependent optimizations

• Maps Boolean expressions into a particular cell library
• Mapping may take into account area, delay
• Allows more accurate delay models

• Transformation from technology-independent to
technology-dependent is called library binding

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.22

Boolean Network
• A Boolean network is the main representation of the logic functions

for technology independent optimizations
• Each node can be represented as sum-of-products (or PoS)
• Provides multi-level structure, but functions in the network need not

correspond to logic gates

k3 = k1 x4’

x1 x2 x3 x4

primary outputs

primary inputs

k1 = x2 + x3

out1 = k2 + x2’ out2 = k3 + x1

k2 = x1’ x2 x4 + k1

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.23

Terms

• Support – set of variables used by a function
• Transitive fanout – all the primary outputs and

intermediate variables of a function
• Transitive fanin – all the primary inputs and

intermediate variables used by a function
• Transitive fanin determines a cone of logic

Cone
primary
inputs output

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.24

Technology Independent Optimization

• Simplification rewrites node to simplify its form
• Network restructuring introduces new nodes for

common factors, collapses several nodes into one
new node

• Delay restructuring changes factorization to reduce
path length

• Don’t know exact gate structure, but can estimate final
network cost
• Area estimated by number of literals (true or

complement forms of variables)
• Delay estimated by path length

5

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.25

Don’t Cares in Boolean Networks
• In two-level function, don’t-cares are defined at

primary output
• In Boolean network, structure of network itself

introduces don’t-cares
• Two types

• Satisfiability – intermediate variable’s value is
inconsistent with its function inputs

• Observability – intermediate variable’s value doesn’t
affect the network primary outputs

g=ab

a b c

y y == g
a=b=0, f=1 can’t happen
Don’t-care for f: y’g + yg’

f=yc a

b

x

If a=1, then b is don’t-care

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.26

Factorization

• Based on division:
• Formulate candidate divisor;
• Test how it divides into the function;
• if g = f/c, we can use c as an intermediate

function for f
• Algebraic division: don’t take into account

Boolean simplification
• Less expensive then Boolean division

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.27

LUT-based Logic Synthesis
• Cost metric for static gates is literal

• ax + bx’ has four literals, requires 8 transistors
• Cost metric for FPGAs is logic element
• All functions that fit in an LE have the same

cost

r = q + s’

q = g’ + h s = d’

d = a + b

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.28

Behavioral Synthesis

• Sequential operation is not the most abstract
description of behavior

• We can describe behavior without assigning
operations to particular clock cycles

• High-level synthesis (behavioral synthesis)
transforms an unscheduled behavior into a
register-transfer behavior

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.29

Tasks in Behavioral Synthesis

• Scheduling – determines clock cycle on which
each operation will occur

• Allocation – chooses which function units will
execute which operations

• Data dependencies describe relationships
between operations:
• x <= a + b; value of x depends on a, b

• High-level synthesis must preserve data
dependencies

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.30

Data Flow Graphs

• Data flow graph (DFG) models data dependencies
• Does not require that operations be performed in a

particular order
• Models operations in a basic block of a functional

model—no conditionals
• Requires single-assignment form

original code
x <= a + b;
y <= a * c;
z <= x + d;
x <= y - d;
x <= x + c;

single-assignment form
x1 <= a + b;
y <= a * c;
z <= x1 + d;
x2 <= y - d;
x3 <= x2 + c;

6

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.31

Data Flow Graphs (cont.)

• Data flow forms directed acyclic graph (DAG):

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.32

Binding Values to Registers

• Registers fall on clock cycle boundaries

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.33

Choosing Functional Units

• Muxes allow for
same unit used for
different values at
different times

• Multiplexer controls
which value has
access to the unit

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.34

Building the Sequencer

Sequencer requires three states,
even with no conditionals

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.35

Class Exercise

• How do the quadratic equation designs now
compare? (total area usage including
control)

+

x

y

x

B

Ax

C+

A

xx

B C

+

y

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.36

Choices During Behavioral Synthesis

• Scheduling determines number of clock cycles
required

• Binding determines area, cycle time
• Area tradeoffs must consider shared function

units vs. multiplexers, control
• Delay tradeoffs must consider cycle time vs.

number of cycles

7

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.37

Finding Schedules

• Two simple schedules:
• As-soon-as-possible (ASAP) schedule puts

every operation as early in time as possible
• As-late-as-possible (ALAP) schedule puts

every operation as late in schedule as possible
• Many schedules exist between ALAP and

ASAP extremes

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.38

ASAP and ALAP schedules

ASAP

ALAP

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.39

Critical Path

• Longest path through data flow
determines minimum schedule length

• Operator chaining:
• May execute several operations in

sequence in one cycle
• Delay through function units may not

be additive, such as through several
adders

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.40

Control Implementation

• Clock cycles are also known as control steps
• Longer schedule means more states in

controller
• Cost of controller may be hard to judge from

casual inspection of state transition graph

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.41

Controllers and Scheduling

functional
model:

x <= a + b;
y <= c + d;

one state

two states
CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.42

Summary

• Synthesis is an overloaded term in the FPGA
design world

• Start from VHDL/Verilog/etc. or other system
description

• Generate bitstream, netlist, logic gates

• Relevant steps:
1. Behavioral code to RTL code (.v)
2. RTL code to logic netlist (.edn)
3. Netlist to primitives file (.ngc)
4. Primitives file to implementation file (.bit)

