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Lecture #13 – FPGA Synthesis
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Quick Points
• Upcoming Deadlines

• Project proposals – Sunday, October 8
• Not all groups accounted for

• Midterm – Thursday, October 12
• Assigned next week Tuesday (following conceptual 

review in class)
• Short, not a homework

• HW #3 – Tuesday, October 17
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Synthesis

syn·the·sis (sin’thu-sis) n. – the combining of 
the constituent elements of separate material 
or abstract entities into a single or unified entity

• For hardware, the “abstract entity” is a circuit 
description

• “Unified entity” is a hardware implementation
• Hardware compilation (but not really)
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FPGA Synthesis

• The term “synthesis” has become overloaded 
in the FPGA world

• Examples:
• System synthesis
• Behavioral / high-level / algorithmic synthesis
• RT-level synthesis
• Logic synthesis
• Physical synthesis

• Our usage: FPGA synthesis = behavioral 
synthesis + logic synthesis + physical synthesis
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Logic Synthesis

• Input – Boolean description
• Goal – to develop an optimized circuit 

representation based on the logic design
• Boolean expressions are converted into a circuit 

representation (gates)
• Takes into consideration speed/area/power 

requirements of the original design

• For FPGA, need to map to LUTs instead of 
logic gates (technology mapping)
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Behavioral Synthesis

• Inputs
• Control and data flow graph (CDFG)
• Cell library

• Ex: fast adder, slow adder, multiplier, etc.
• Speed/area/power characteristics

• Constraints
• Total speed/area/power 

• Output
• Datapath and control to implement
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Outline

• Quick Points
• Introduction
• FPGA Design Flow
• Logic Synthesis
• FPGA Technology Mapping
• Behavioral Synthesis

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.8

FPGA Design Translation

• CAD to translate circuit from text description to 
physical implementation well understood

• Most current FPGA designers use register-
transfer level specification (allocation and 
scheduling)

• Same basic steps as ASIC design

RTL
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FPGA Circuit Compilation
• Technology Mapping

• Placement

• Routing

LUT

LUT

Assign a logical LUT to a physical location

Select wire segments and 
switches for interconnection
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Standard FPGA Design Flow

• Design Entry
• Synthesis

• Design abstracted as a list of operations and dependencies
• Transformed into state diagrams and then logic networks 

(netlist)
• Design Implementation

• Translate – merges multiple design files into a single netlist
• Map – groups logical components from netlist into IOBs and 

CLBs
• Place & Route – place components on the FPGA and 

connect them
• Device File Programming

• Generates a bitstream containing CLB/IOB configuration and 
routing information to be directly loaded onto the FPGA
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FPGA Design Flow (Xilinx)

Design Entry

Synthesis

Implementation

Device
Programming

Functional
Simulation

Timing
Simulation

HDL files,
schematics

EDIF/XNF
netlist

NGD Xilinx 
primitives file

FPGA bitstream
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Design Flow with Test
Design and implement a simple unit permitting to speed 
up encryption with RC5-similar cipher with fixed key set 
on 8031 microcontroller. Unlike in the experiment 5, this 
time your unit has to be able to perform an encryption 
algorithm by itself, executing 32 rounds…..

Library IEEE;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity RC5_core is
port(

clock, reset, encr_decr: in std_logic;
data_input: in std_logic_vector(31 downto 0);
data_output: out std_logic_vector(31 downto 0);
out_full: in std_logic;
key_input: in std_logic_vector(31 downto 0);
key_read: out std_logic;

);
end RC5_core;

Specification

VHDL
description

Functional simulation

Post-synthesis simulationSynthesized
Circuit
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Design Flow with Test (cont.)

Implementation

Configuration

Timing simulation

On chip testing

Post-synthesis simulationSynthesized
Circuit
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Synthesis Tools
• Interpret RTL code
• Produce synthesized circuit netlist in a standard EDIF 

format
• Give preliminary performance estimates
• Display circuit schematic corresponding to EDIF netlist

Performance Summary 
*******************

Worst slack in design: -0.924

Requested     Estimated     Requested Estimated 
Clock              Clock          

Starting Clock    Frequency     Frequency     Period            Period        
Slack      Type                 Group              

---------------------------------------------------------------------------------
----------------------

exam1|clk          85.0 MHz      78.8 MHz      11.765        12.688        -0.924   
inferred     Inferred_clkgroup_0

System             85.0 MHz       86.4 MHz      11.765        11.572        0.193   
system       default_clkgroup   

===========================================================
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Implementation

Implementation

UCF

NGD

EDIF NCF

Native Generic Database file

Constraint Editor

User Constraint File

Native 
Constraint 

File

Electronic Design 
Interchange Format

Circuit netlist Timing Constraints

Synthesis
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Circuit Netlist and Mapping

LUT2

LUT3

LUT4

LUT5
FF1

FF2

LUT1

LUT0
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Placing and Routing

Programmable Connections

FPGA
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Place and Route Report

Timing Score: 0

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

--------------------------------------------------------------------------------
Constraint                                | Requested  | Actual     | Logic 

|            |      | Levels
--------------------------------------------------------------------------------
TS_clk = PERIOD TIMEGRP "clk" 11.765 ns | 11.765ns   | 11.622ns   | 13   
HIGH 50%                                  |            |         |      

--------------------------------------------------------------------------------
OFFSET = OUT 11.765 ns AFTER COMP "clk"   | 11.765ns   | 11.491ns   | 1    

--------------------------------------------------------------------------------
OFFSET = IN 11.765 ns BEFORE COMP "clk"   | 11.765ns   | 11.442ns   | 2    

--------------------------------------------------------------------------------
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Configuration

• Once a design is implemented, you must create a file 
that the FPGA can understand
• This file is called a bit stream: a BIT file (.bit extension)

• The BIT file can be downloaded directly to the FPGA, 
or can be converted into a PROM file which stores the 
programming information
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Logic Synthesis

• Syntax-based translation
• Translate HDL into logic directly (ab + ac)
• Generally requires optimization

• Macros
• Pre-designed logic
• Generally identified by language features

• Hard macro: includes placement
• Soft macro: no placement
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Logic Synthesis Phases

• Technology-independent optimizations
• Works on Boolean expression equivalent
• Estimates size based on number of literals
• Uses factorization, resubstitution, minimization to 

optimize logic
• Technology-independent phase uses simple delay 

models
• Technology-dependent optimizations 

• Maps Boolean expressions into a particular cell library
• Mapping may take into account area, delay
• Allows more accurate delay models

• Transformation from technology-independent to 
technology-dependent is called library binding
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Boolean Network
• A Boolean network is the main representation of the logic functions 

for technology independent optimizations
• Each node can be represented as sum-of-products (or PoS)
• Provides multi-level structure, but functions in the network need not 

correspond to logic gates

k3 = k1 x4’

x1 x2 x3 x4

primary outputs

primary inputs

k1 = x2 + x3

out1 = k2 + x2’ out2 = k3 + x1

k2 = x1’ x2 x4 + k1
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Terms

• Support – set of variables used by a function
• Transitive fanout – all the primary outputs and 

intermediate variables of a function
• Transitive fanin – all the primary inputs and 

intermediate variables used by a function
• Transitive fanin determines a cone of logic

Cone
primary
inputs output
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Technology Independent Optimization

• Simplification rewrites node to simplify its form
• Network restructuring introduces new nodes for 

common factors, collapses several nodes into one 
new node

• Delay restructuring changes factorization to reduce 
path length

• Don’t know exact gate structure, but can estimate final 
network cost
• Area estimated by number of literals (true or 

complement forms of variables)
• Delay estimated by path length
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Don’t Cares in Boolean Networks
• In two-level function, don’t-cares are defined at 

primary output
• In Boolean network, structure of network itself 

introduces don’t-cares
• Two types

• Satisfiability – intermediate variable’s value is 
inconsistent with its function inputs

• Observability – intermediate variable’s value doesn’t 
affect the network primary outputs

g=ab

a b c

y y == g
a=b=0, f=1 can’t happen
Don’t-care for f: y’g + yg’

f=yc a

b

x

If a=1, then b is don’t-care
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Factorization

• Based on division:
• Formulate candidate divisor;
• Test how it divides into the function;
• if g = f/c, we can use c as an intermediate 

function for f
• Algebraic division: don’t take into account 

Boolean simplification
• Less expensive then Boolean division

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.27

LUT-based Logic Synthesis
• Cost metric for static gates is literal

• ax + bx’ has four literals, requires 8 transistors
• Cost metric for FPGAs is logic element
• All functions that fit in an LE have the same 

cost

r = q + s’

q = g’ + h s = d’

d = a + b
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Behavioral Synthesis

• Sequential operation is not the most abstract 
description of behavior

• We can describe behavior without assigning 
operations to particular clock cycles

• High-level synthesis (behavioral synthesis) 
transforms an unscheduled behavior into a 
register-transfer behavior
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Tasks in Behavioral Synthesis

• Scheduling – determines clock cycle on which 
each operation will occur

• Allocation – chooses which function units will 
execute which operations

• Data dependencies describe relationships 
between operations:
• x <= a + b; value of x depends on a, b

• High-level synthesis must preserve data 
dependencies
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Data Flow Graphs

• Data flow graph (DFG) models data dependencies
• Does not require that operations be performed in a 

particular order
• Models operations in a basic block of a functional 

model—no conditionals
• Requires single-assignment form

original code
x <= a + b;
y <= a * c;
z <= x + d;
x <= y - d;
x <= x + c;

single-assignment form
x1 <= a + b;
y <= a * c;
z <= x1 + d;
x2 <= y - d;
x3 <= x2 + c;
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Data Flow Graphs (cont.)

• Data flow forms directed acyclic graph (DAG):
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Binding Values to Registers

• Registers fall on clock cycle boundaries
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Choosing Functional Units

• Muxes allow for 
same unit used for 
different values at 
different times

• Multiplexer controls 
which value has 
access to the unit

CprE 583 – Reconfigurable ComputingOctober 3, 2006 Lect-13.34

Building the Sequencer

Sequencer requires three states,
even with no conditionals
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Class Exercise

• How do the quadratic equation designs now 
compare? (total area usage including 
control)

+

x

y

x

B

Ax

C+

A

xx

B C

+

y
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Choices During Behavioral Synthesis

• Scheduling determines number of clock cycles 
required

• Binding determines area, cycle time
• Area tradeoffs must consider shared function 

units vs. multiplexers, control
• Delay tradeoffs must consider cycle time vs. 

number of cycles
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Finding Schedules

• Two simple schedules:
• As-soon-as-possible (ASAP) schedule puts 

every operation as early in time as possible
• As-late-as-possible (ALAP) schedule puts 

every operation as late in schedule as possible
• Many schedules exist between ALAP and 

ASAP extremes
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ASAP and ALAP schedules

ASAP

ALAP
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Critical Path

• Longest path through data flow 
determines minimum schedule length

• Operator chaining:
• May execute several operations in 

sequence in one cycle
• Delay through function units may not 

be additive, such as through several 
adders
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Control Implementation

• Clock cycles are also known as control steps
• Longer schedule means more states in 

controller
• Cost of controller may be hard to judge from 

casual inspection of state transition graph
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Controllers and Scheduling

functional 
model:

x <= a + b;
y <= c + d;

one state

two states
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Summary

• Synthesis is an overloaded term in the FPGA 
design world

• Start from VHDL/Verilog/etc. or other system 
description

• Generate bitstream, netlist, logic gates

• Relevant steps:
1. Behavioral code to RTL code (.v)
2. RTL code to logic netlist (.edn)
3. Netlist to primitives file (.ngc)
4. Primitives file to implementation file (.bit) 


