











### Outline

- Recap
- · Placement and Routing Metrics
- FPGA Placement Techniques
  - Iterative partitioning
  - Simulated annealing
- FPGA Routing Techniques

October 5, 200

CprE 583 – Reconfigurable Computing

. . . . . . .

### ••• Placement and Routing

- · Two critical phases of layout design:
  - · Placement of components on the chip
  - Routing of wires between components
- Placement and routing interact, but separating layout design into phases helps us understand the problem and find good solutions

October 5, 2006

CprE 583 - Reconfigurable Con

### Placement Metrics

- · Quality metrics for layout:
  - Area
  - Delay
  - Power
- · Area and delay determined partly by wiring
- How do we judge a placement without wiring?
  - Estimate wire length without actually performing routing
- · Design time may be important for FPGAs

October 5, 20

CprE 583 – Reconfigurable Computing

.ect-14.9

### FPGA Issues

- · Often want a fast answer
  - May be willing to accept lower quality result for less place/route time
- May be interested in knowing wirability without needing the final configuration
- Fast placement: constructive placement, iterative improvement through simulated annealing

October 5, 2

CprE 583 – Reconfigurable Computing

Lect-14.10

# Wire Length as a Quality Metric Bad Placement Good Placement Cotober 5, 2008 CprE 583 - Reconfigurable Computing Lect-14.11

### Wire Length Measures Estimate wire length by distance between components Possible distance measures: Euclidean distance (sqrt(x² + y²)) Manhattan distance (x + y) Multi-point nets must be broken up into trees for good estimates





# Placement by Partitioning Works well for components of fairly uniform size Partition netlist to minimize total wire length using min-cut criterion Partitioning may be interpreted as 1-D or 2-D layout







### Kernighan-Lin Algorithm

- · Compute min cut criterion:
  - Count total net cut change
- Algorithm exchanges sets of nodes to perform hill-climbing—finding improvements where no single swap will improve the cut
- Recursively subdivide to determine placement detail

### Kernighan-Lin Algorithm (cont.)

- Make an initial guess partition into two subsets of equal sizes, and unlock all the vertices in the graph
- Associate a cost D with every vertex i, where D(i) = E(i) - I(i)
  - I(i) is the number of edges that do not cross the bisection boundary
  - E(i) is the number of edges that cross the boundary
- 3. Calculate the gain G for all possible swaps between unlocked vertices a and b
  - $G(a_i,b_i) = D(a_i) + D(b_i) 2C(a_i, b_i)$
  - C(a<sub>i</sub>, b<sub>i</sub>) is the weight of the edge between (a<sub>i</sub>,b<sub>i</sub>)
- Make the swap for the max G, and lock the nodes
- Iterate until no more swaps can be made

CprE 583 - Reconfigu

### In-Class Exercise

· Step through Kernighan-Lin on the following circuit:



### Simulated Annealing

- Powerful but CPU-intensive optimization technique
- Analogy to annealing of metals:
  - · Temperature determines probability of a component jumping position
  - Probabilistically accept moves
  - · Start at high temperature, cool to lower temperature to try to reach good placement

### Physical Annealing Analogy

- Take a metal and heat to high temperature
- · Allow it to cool slowly; metal is annealed to a low temperature
- · Atoms in the metal are at lower energy states after annealing
- · Higher the temperature initially and slower the cooling, the tougher the metal becomes
- Atoms transition to high energy states and then move to low energy

### Simulated Annealing (cont.)

- Generate random moves
  - Initially, accept moves that decrease and increase cost
  - Local minimum versus global minimum
- · As temperature decreases, the probability of accepting bad moves decreases
- Eventually, default to greedy algorithm



### Annealing Wrap-up

- · Big-hammer for hard optimization problems
- · General cost model accommodates most any constraints
- · If cool slowly enough, will get good results
- Finesse in working out parameters
- · Cost should be cheap to update
- · Annealing schedule can be tricky to optimize (balance speed versus quality)
- · ...generally takes a long time... (...why PPR is slow)

### Imagine ... (Routing)

- · You have to plan transportation (i.e. roads and highways) for a new city the size of Chicago
- Many dwellings need direct roads that can't be used by anyone else
- · You can affect the layout of houses and neighborhoods but the architects and planners will complain
- And ... you're told that the time along any path can't be longer than a fixed amount
- What are some of your considerations?

### Some Considerations

- How many levels do the roads need to go?
  - · Remember: higher is more expensive
- · How to avoid congestion?
- · What basic structure do I want for my roads?
  - Manhattan?
  - · Chicago?
  - Boston?
- · Automated routing tools have to solve problems of comparable complexity on every leading-edge chip

### Routing Sub-Problems

- Shortest Path (two-pin nets O(N<sub>3</sub>))
- Steiner Tree (easy for *n*-pin where  $n \le 5$ : NPcomplete in general)
- Compatibility (NP-complete)



### Routing Compatibility

- · Example: satisfy three simultaneous net connections (A-A, B-B, C-C)
- A-A cannot use middle track
- · Greedy approach will not be sufficient



Standard Approach

- Major phases in routing:
  - Global routing assigns nets to routing areas
  - Detailed routing designs the routing areas
  - One phase routers channel assignment and wire selection happens in one routing pass
- Two phase routers were initially popular
- Simpler to write and faster to execute
- More closely models ASIC routing techniques
- One phase routers shown to give MUCH better performance
- Net ordering is a major problem
  - Order in which nets are routed determines quality of
  - Net ordering is a heuristic









### ••• Summary

- Placement
  - Placement and clustering of modules critically important for subsequent routing step
  - Often initial placement performed and then iteratively improved
  - Mincut partitioning approaches sometimes used for initial placement
  - Can benefit from simulated annealing approaches, given an accurate cost function
- Routing
  - Routing a difficult problem based on device size, complexity
  - · Hard part of routing is the compatibility problem
  - Can be attacked using iterative or simulated annealing approaches

October 5, 2006

CprE 583 – Reconfigurable Computing

Lect-14.35