
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #16 – Introduction to VHDL I

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.2

Quick Points

• Midterm was a semi-success
• Right time estimate, wrong planet (Pluto?)
• Everyone did OK

• HW #3 extended to Thursday, 10/18 (12:00pm)

• Resources for the next couple of weeks
• Sundar Rajan, Essential VHDL: RTL Synthesis

Done Right, 1997.
• Will add some VHDL links to CprE 583 web

page sometime this week

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.3

VHDL

• VHDL is a language for describing digital
hardware used by industry worldwide

• VHDL is an acronym for VHSIC (Very High
Speed Integrated Circuit) Hardware
Description Language

• Developed in the early ’80s
• Three versions in common use: VHDL-87,

VHDL-93, VHDL-01
CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.4

VHDL v. Verilog

Less PowerfulMore Powerful

Easier to LearnDifficult to learn

Mildly Type CastStrongly Type Cast

C basedAda based

Commercially
Developed

Government
Developed

VHDL Verilog

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.5

VHDL for Synthesis
VHDL for Specification

VHDL for Simulation

VHDL for Synthesis

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.6

Outline

• Introduction
• VHDL Fundamentals
• Design Entities
• Libraries
• Logic, Wires, and Buses
• VHDL Design Styles
• Introductory Testbenches

2

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.7

Naming and Labeling

• VHDL is not case sensitive
Example:

Names or labels
databus
Databus
DataBus
DATABUS

are all equivalent

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.8

Naming and Labeling (cont.)

General rules of thumb (according to VHDL-87)

1. All names should start with an alphabet character (a-z or A-Z)
2. Use only alphabet characters (a-z or A-Z) digits (0-9) and

underscore (_)
3. Do not use any punctuation or reserved characters within a name

(!, ?, ., &, +, -, etc.)
4. Do not use two or more consecutive underscore characters (__)

within a name (e.g., Sel__A is invalid)
5. All names and labels in a given entity and architecture must be

unique

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.9

Free Format

• VHDL is a “free format” language
No formatting conventions, such as spacing or

indentation imposed by VHDL compilers. Space and
carriage return treated the same way.
Example:

if (a=b) then

or
if (a=b) then

or
if (a =
b) then

are all equivalent
CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.10

Comments

• Comments in VHDL are indicated with
a “double dash”, i.e., “--”

• Comment indicator can be placed anywhere in
the line

• Any text that follows in the same line is treated
as a comment

• Carriage return terminates a comment
• No method for commenting a block extending

over a couple of lines
Examples:
-- main subcircuit
Data_in <= Data_bus; -- reading data from the input FIFO

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.11

Design Entity

Design Entity - most basic
building block of a design

One entity can have
many different architectures

entity declaration

architecture 1

architecture 2

architecture 3

design entity

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.12

Entity Declaration

• Entity Declaration describes the interface of
the component, i.e. the input and output ports

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC

);
END nand_gate;

Reserved words

Entity name Port names Port type
Semicolon

No Semicolon

Port modes (data flow directions)

3

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.13

Entity Declaration (cont.)

ENTITY entity_name IS
PORT (

port_name : signal_mode signal_type;
port_name : signal_mode signal_type;
………….
port_name : signal_mode signal_type);

END entity_name;

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.14

Architecture

• Describes an implementation of a design entity
• Architecture example:

• Simplified syntax:

ARCHITECTURE model OF nand_gate IS
BEGIN

z <= a NAND b;
END model;

ARCHITECTURE architecture_name OF entity_name IS
[declarations]

BEGIN
code

END architecture_name;

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.15

Entity Declaration and Architecture

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC);

END nand_gate;

ARCHITECTURE model OF nand_gate IS
BEGIN

z <= a NAND b;
END model;

nand_gate.vhd

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.16

Port Modes

Can’t read out
within an entity

Entity Port signal

Driver resides
inside the entity

z

c

Port signal
Entity

Driver resides
inside the entity

Signal X can be
read inside the entity

x

c

z

Signal can be
read inside
the entity

EntityPort signal

Driver may reside both inside and
outside of the entity

a

a

Entity

Port signal

Driver resides
outside the entity

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.17

Port Modes (cont.)
• The Port Mode of the interface describes

the direction in which data travels with
respect to the component
• In: Data comes in this port and can only be read within

the entity. It can appear only on the right side of a
signal or variable assignment

• Out: The value of an output port can only be updated
within the entity. It cannot be read. It can only appear on
the left side of a signal assignment

• Inout: The value of a bi-directional port can be read and
updated within the entity model. It can appear on both
sides of a signal assignment

• Buffer: Used for a signal that is an output from an
entity. The value of the signal can be used inside the
entity, which means that in an assignment statement the
signal can appear on the left and right sides of the <=
operator

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.18

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC);

END nand_gate;

ARCHITECTURE model OF nand_gate IS
BEGIN

z <= a NAND b;
END model;

Library Declarations

Use all definitions from the package
std_logic_1164

IEEE Library declaration

4

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.19

Library Declarations (cont.)

LIBRARY library_name;
USE library_name.pkg_name.pkg_parts;

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.20

Library Components

LIBRARY

PACKAGE 1 PACKAGE 2

TYPES
CONSTANTS
FUNCTIONS

PROCEDURES
COMPONENTS

TYPES
CONSTANTS
FUNCTIONS

PROCEDURES
COMPONENTS

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.21

Common Libraries

• IEEE
• Specifies multi-level logic system, including

STD_LOGIC, and STD_LOGIC_VECTOR data types
• Needs to be explicitly declared

• STD
• Specifies pre-defined data types (BIT, BOOLEAN,

INTEGER, REAL, SIGNED, UNSIGNED, etc.),
arithmetic operations, basic type conversion functions,
basic text i/o functions, etc.

• Visible by default

• WORK
• Current designs after compilation
• Visible by default

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.22

STD_LOGIC Demystified

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY nand_gate IS
PORT(

a : IN STD_LOGIC;
b : IN STD_LOGIC;
z : OUT STD_LOGIC);

END nand_gate;

ARCHITECTURE model OF nand_gate IS
BEGIN

z <= a NAND b;
END model;

Hmm?

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.23

STD_LOGIC Demystified (cont.)

MeaningValue

Don't Care‘-’

Weak (Weakly driven) 1. Models a pull up.‘H’

Weak (Weakly driven) 0. Models a pull down.‘L’

Weak (Weakly driven) Unknown‘W’

High Impedance‘Z’

Forcing (Strong driven) 1‘1’

Forcing (Strong driven) 0‘0’

Forcing (Strong driven) Unknown‘X’

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.24

Resolving Logic Levels

X 0 1 Z W L H -
X X X X X X X X X
0 X 0 X 0 0 0 0 X
1 X X 1 1 1 1 1 X
Z X 0 1 Z W L H X
W X 0 1 W W W W X
L X 0 1 L W L W X
H X 0 1 H W W H X
- X X X X X X X X

5

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.25

Wires and Buses

• SIGNAL a : STD_LOGIC;

• SIGNAL b : STD_LOGIC_VECTOR(7
DOWNTO 0);

wire

a

bus

b

1

8

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.26

Standard Logic Vectors
SIGNAL a: STD_LOGIC;
SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL d: STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL e: STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL f: STD_LOGIC_VECTOR(8 DOWNTO 0);

a <= ‘1’;
b <= ”0000”; -- Binary base assumed by default
c <= B”0000”; -- Binary base explicitly specified
d <= ”0110_0111”; -- To increase readability
e <= X”AF67”; -- Hexadecimal base
f <= O”723”; -- Octal base

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.27

Vectors and Concatenation

SIGNAL a: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL b: STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL c, d, e: STD_LOGIC_VECTOR(7 DOWNTO 0);

a <= ”0000”;
b <= ”1111”;
c <= a & b; -- c = ”00001111”

d <= ‘0’ & ”0001111”; -- d <= ”00001111”

e <= ‘0’ & ‘0’ & ‘0’ & ‘0’ & ‘1’ & ‘1’ &
‘1’ & ‘1’; -- e <= ”00001111”

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.28

VHDL Design Styles

Components and
interconnects

structural

VHDL Design
Styles

dataflow

Concurrent
statements

behavioral

• Registers
• State machines
• Test benches

Sequential statements

Subset most suitable for synthesis

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.29

XOR3 Example

ENTITY xor3 IS
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
C : IN STD_LOGIC;
Result : OUT STD_LOGIC);

end xor3;

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.30

Dataflow Descriptions

• Describes how data moves through the system
and the various processing steps

• Dataflow uses series of concurrent statements
to realize logic
• Concurrent statements are evaluated at the

same time
• Order of these statements doesn’t matter

• Dataflow is most useful style when series of
Boolean equations can represent a logic

6

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.31

XOR3 Example (cont.)

ARCHITECTURE dataflow OF xor3 IS
SIGNAL U1_out: STD_LOGIC;
BEGIN

U1_out <=A XOR B;
Result <=U1_out XOR C;

END dataflow;

U1_out

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.32

Structural Description

• Structural design is the simplest to understand
• Closest to schematic capture
• Utilizes simple building blocks to compose logic

functions
• Components are interconnected in a hierarchical

manner
• Structural descriptions may connect simple gates or

complex, abstract components
• Structural style is useful when expressing a design

that is naturally composed of sub-blocks

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.33

XOR3 Example (cont.)
ARCHITECTURE structural OF xor3 IS
SIGNAL U1_OUT: STD_LOGIC;

COMPONENT xor2 IS
PORT (

I1 : IN STD_LOGIC;
I2 : IN STD_LOGIC;
Y : OUT STD_LOGIC);

END COMPONENT;

BEGIN
U1: xor2 PORT MAP (I1 => A,

I2 => B,
Y => U1_OUT);

U2: xor2 PORT MAP (I1 => U1_OUT,
I2 => C,
Y => Result);

END structural;

I1
I2 Y

XOR2

A
B C RESULT

U1_OUT

XOR3

A
B
C

ResultXOR3

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.34

Component and Instantiation

• Named association
connectivity
(recommended)

COMPONENT xor2 IS
PORT(

I1 : IN STD_LOGIC;
I2 : IN STD_LOGIC;
Y : OUT STD_LOGIC
);

END COMPONENT;

U1: xor2 PORT MAP (I1 => A,
I2 => B,
Y => U1_OUT);

COMPONENT xor2 IS
PORT(

I1 : IN STD_LOGIC;
I2 : IN STD_LOGIC;
Y : OUT STD_LOGIC
);

END COMPONENT;

U1: xor2 PORT MAP (A, B, U1_OUT);

• Positional association
connectivity (not
recommended)

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.35

Behavioral Description
• Accurately models what happens on the inputs

and outputs of the black box
• Uses PROCESS statements in VHDL

ARCHITECTURE behavioral OF xor3 IS
BEGIN
xor3_behave: PROCESS (A,B,C)
BEGIN

IF ((A XOR B XOR C) = '1') THEN
Result <= '1';

ELSE
Result <= '0';

END IF;
END PROCESS xor3_behave;
END behavioral;

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.36

Testbenches

Testbench

Processes

Generating

Stimuli

Design Under
Test (DUT)

Observed Outputs

7

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.37

Testbench Definition

• Testbench applies stimuli (drives the inputs) to
the Design Under Test (DUT) and (optionally)
verifies expected outputs

• The results can be viewed in a waveform
window or written to a file

• Since Testbench is written in VHDL, it is not
restricted to a single simulation tool (portability)

• The same Testbench can be easily adapted to
test different implementations (i.e. different
architectures) of the same design

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.38

ENTITY tb IS
--TB entity has no ports

END tb;

ARCHITECTURE arch_tb OF tb IS
--Local signals and constants

COMPONENT TestComp --All DUT component declarations
PORT ();

END COMPONENT;

BEGIN

testSequence: PROCESS -- Input stimuli
END PROCESS;
DUT:TestComp PORT MAP(); -- Instantiations of DUTs

END arch_tb;

Testbench Anatomy

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.39

Testbench for XOR3
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY xor3_tb IS
END xor3_tb;

ARCHITECTURE xor3_tb_architecture OF xor3_tb IS
COMPONENT xor3
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
C : IN STD_LOGIC;
Result : OUT STD_LOGIC);

END COMPONENT;

-- Stimulus signals - mapped to the input and inout ports of tested entity
SIGNAL test_vector: STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL test_result : STD_LOGIC;

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.40

Testbench for XOR3 (cont.)
BEGIN
UUT : xor3

PORT MAP (
A => test_vector(0),
B => test_vector(1),
C => test_vector(2),
Result => test_result);

Testing: PROCESS
BEGIN
test_vector <= "000";
WAIT FOR 10 ns;
test_vector <= "001";
WAIT FOR 10 ns;
test_vector <= "010";
WAIT FOR 10 ns;
…

…
test_vector <= "011";
WAIT FOR 10 ns;
test_vector <= "100";
WAIT FOR 10 ns;
test_vector <= "101";
WAIT FOR 10 ns;
test_vector <= "110";
WAIT FOR 10 ns;
test_vector <= "111";
WAIT FOR 10 ns;

END PROCESS;
END xor3_tb_architecture;

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.41

• A process can be given a unique
name using an optional LABEL

• This is followed by the keyword
PROCESS

• The keyword BEGIN is used to
indicate the start of the process

• All statements within the process
are executed SEQUENTIALLY.
Hence, order of statements is
important

• A process must end with the
keywords END PROCESS

Testing: PROCESS
BEGIN

test_vector<=“00”;
WAIT FOR 10 ns;
test_vector<=“01”;
WAIT FOR 10 ns;
test_vector<=“10”;
WAIT FOR 10 ns;
test_vector<=“11”;
WAIT FOR 10 ns;

END PROCESS;

A process is a sequence of instructions referred
to as sequential statements

The keyword PROCESS

What is a Process?

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.42

Process Execution

• The execution of
statements continues
sequentially till the last
statement in the
process

• After execution of the
last statement, the
control is again passed
to the beginning of the
process

Testing: PROCESS
BEGIN

test_vector<=“00”;
WAIT FOR 10 ns;
test_vector<=“01”;
WAIT FOR 10 ns;
test_vector<=“10”;
WAIT FOR 10 ns;
test_vector<=“11”;
WAIT FOR 10 ns;

END PROCESS;

Program control is passed to the
first statement after BEGIN

O
rd

er
 o

f e
xe

cu
tio

n

8

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.43

WAIT Statements

• The last statement in the
PROCESS is a WAIT
instead of WAIT FOR 10
ns

• This will cause the
PROCESS to suspend
indefinitely when the WAIT
statement is executed

• This form of WAIT can be
used in a process included
in a testbench when all
possible combinations of
inputs have been tested or
a non-periodical signal has
to be generated

Testing: PROCESS
BEGIN

test_vector<=“00”;
WAIT FOR 10 ns;
test_vector<=“01”;
WAIT FOR 10 ns;
test_vector<=“10”;
WAIT FOR 10 ns;
test_vector<=“11”;
WAIT;

END PROCESS;

Program execution stops here

O
rd

er
 o

f e
xe

cu
tio

n

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.44

WAIT FOR vs. WAIT

WAIT FOR: waveform will keep repeating
itself forever

WAIT: waveform will keep its state after the
last wait instruction.

0 1 2 3

…

0 1 2 3 …

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.45

Loop Statement

• Loop Statement

• Repeats a Section of VHDL Code
• Example: process every element in an array in

the same way

FOR i IN range LOOP
statements

END LOOP;

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.46

Loop Statement Example

Testing: PROCESS
BEGIN

test_vector<="000";
FOR i IN 0 TO 7 LOOP

WAIT FOR 10 ns;
test_vector<=test_vector+”001";

END LOOP;
END PROCESS;

CprE 583 – Reconfigurable ComputingOctober 16, 2006 Lect-16.47

Loop Statement Example (cont.)

Testing: PROCESS
BEGIN

test_ab<="00";
test_sel<="00";
FOR i IN 0 TO 3 LOOP

FOR j IN 0 TO 3 LOOP
WAIT FOR 10 ns;
test_ab<=test_ab+"01";

END LOOP;
test_sel<=test_sel+"01";

END LOOP;
END PROCESS;

