CprE / ComS 583

*“"| Recap — 4:1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4tol IS
PORT (w0, w1, w2, w3 : IN STD_LOGIC ;
s 1IN STD_LOGIC_VECTOR(1 DOWNTO 0)
f :OUT STD_LOGIC);
END mux4tol ;

ARCHITECTURE dataflow OF mux4tol IS
BEGIN
WITH s SELECT
f <= w0 WHEN "00",

w1l WHEN "01",

w2 WHEN "10",

w3 WHEN OTHERS ;
END dataflow ;

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.2

[]
Reconfigurable Computing
Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
lowa State University
Lecture #18 —VHDL for Synthesis |
°

Recap — N-bit Register with Reset

ENTITY regn IS

GENERIC (N : INTEGER:=16) ;
PORT(D 1IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;
Resetn, Clock : IN STD_LOGIC ;
: OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0)) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS (Resetn, Clock) N
BEGIN
IF Resetn ='0' THEN
Q <= (OTHERS =>'0') ;
ELSIF Clock'EVENT AND Clock = '1' THEN
Q<=D;
END IF; regn
END PROCESS ;

Resetn | N

—>Clock

END Behavior ;

October 24, 2006

CprEE 583 — Reconfigurable Computing Lect-18.3

*“| Recap — 4-bit Up-Counter with Reset

ARCHITECTURE Behavior OF upcount IS
SIGNAL Count : STD_LOGIC_VECTOR (3 DOWNTO 0) ;
BEGIN
PROCESS (Clock, Resetn)
BEGIN
IF Resetn ='0' THEN
Count <="0000" ;
ELSIF (Clock'EVENT AND Clock ='1") THEN
IF Enable ='1' THEN
Count <=Count +1;

END IF; e
END IF; naple 14
END PROCESS ; Q—+—
Q <=Count; —> Clock
END Behavior ; upcount
Resetn

T

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.4

Design Exercise

+ Design a simple 32-bit CPU
+ Requirements
Three instruction types: load/store, register ALU,
branch-if-equal
8 32-bit registers
ALU operations: ADD, SUB, OR, XOR, AND, CMP
Memory operations: load word, store word
- Components
Instruction memory / decode
Register file
ALU
Data memory
Other control

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.5

° Outline

* Recap

- Finite State Machines
Moore Machines
Mealy Machines

* FSMs in VHDL

State Encoding

- Example Systems
Serial Adder
Arbiter Circuit

October 24, 2006 CprE 583 - Reconfigurable Computing Lect-18.6

° | Structure of a Typical Digital System

Data Inputs Control Inputs

ﬂ Control ﬂ

Control

Execution Signals

Unit <m) Unit

(Control)

(Datapath)

1 | |

Data Outputs Control Outputs

October 24, 2006 CprEE 583 - Reconfigurable Computing Lect-18.7

e=°| Execution Unit (Datapath)

- Provides all necessary resources and

interconnects among them to perform specified

task
- Examples of resources
Adders, multipliers, registers, memories, etc.

October 24, 2006 CprE 583 — Reconfigurable Computing

Lect-18.8

e« Control Unit (Control)

- Controls data movements in operational circuit
by switching multiplexers and enabling or
disabling resources

» Follows some ‘program’ or schedule
- Often implemented as Finite State Machine
or collection of Finite State Machines

October 24, 2006 CprE 583 — Reconfigus Lect-18.9

*“"| Finite State Machines (FSMs)

« Any circuit with memory Is a Finite State
Machine

Even computers can be viewed as huge FSMs

- Design of FSMs involves
Defining states
Defining transitions between states
Optimization / minimization
» Above approach is practical for small FSMs
only

October 24, 2006 CprE 583 — Reconfigurable Computing

Lect-18.10

. Moore FSM

» Output is a function of present state only

Inputs Next State
function

Next State l Present State

clock — WSS elE
reset ——[ERELINEN

Outputs

Output
function

October 24, 2006 CprEE 583 - Reconfigurable Computing Lect-18.11

°-°| Mealy FSM
« Output is a function of a present state and
inputs
Inputs Next State
function

Next State l Present State

(Sl G Present State
[CNCilamy Register

Output Outputs
function

October 24, 2006 CprE 583 - Reconfigurable Computing

Lect-18.12

d | Moore Machine

transition

S condition 1 J—
[[state2/

(state 1/ \‘ [|
\ output2 |

\ outputl/ transition \\ /
\,_/ '\cW .

October 24, 2006 CprEE 583 - Reconfigurable Computing Lect-18.13

e | Mealy Machine

transition condition 1/

— output 1 J—
’// \\\ /—\J / \\

| state1 | | state2 |

\ /" transition condition 2/ \\ :
\‘,,,,// output 2 \,,/,/

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.14

*“[Moore vs. Mealy FSM

» Moore and Mealy FSMs can be functionally
equivalent
Equivalent Mealy FSM can be derived from
Moore FSM and vice versa
- Mealy FSM has richer description and usually
requires smaller number of states
Smaller circuit area

October 24, 2006 CprEE 583 — Reconfigurable Computing Lect-18.15

*“[Moore vs. Mealy FSM (cont.)

» Mealy FSM computes outputs as soon as
inputs change
Mealy FSM responds one clock cycle sooner
than equivalent Moore FSM
» Moore FSM has no combinational path
between inputs and outputs
Moore FSM is more likely to have a shorter
critical path

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.16

° | Moore FSM Example

- Moore FSM that recognizes sequence “10”

0 1

\ 7

T\
S0/ 0———=S1/0 1 S21/ /11\

reset

0
S0: No S1: 1 S2:“10”
Meaning elements observed observed
of states: of the
sequence
observed

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.17

e | Mealy FSM Example
» Mealy FSM that recognizes sequence “10”
0/0 1/0 1/0
& \/\/@
[S0) [S1)
SN
reset 0/1

S0: No S1: 1"

Meaning elements observed

of states: of the
sequence
observed

° | Mealy FSM Example (cont.)

1S0 1S1 152 1S0 iSO
Moore ! \ | | i

'S0 's1 'S0 S0 'S0
Mealy ! ! !

October 24, 2006 CprEE 583 - Reconfigurable Computing

Lect-18.19

FSMs in VHDL

- Finite State Machines can be easily described
with processes
- Synthesis tools understand FSM description if
certain rules are followed
State transitions should be described in a
process sensitive to clock and asynchronous
reset signals only
Outputs described as concurrent statements
outside the process

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.20

*“[Moore FSM Example — VHDL

TYPE state IS (S0, S1, S2);
SIGNAL Moore_state: state;

U_Moore: PROCESS (clock, reset)
BEGIN
IF(reset = ‘1) THEN
Moore_state <= S0;
ELSIF (clock = ‘1" AND clock’event) THEN
CASE Moore_state IS
WHEN S0 =>
IF input = ‘1’ THEN
Moore_state <= S1;
ELSE
Moore_state <= S0;
END IF;

October 24, 2006 CprEE 583 — Reconfigurable Computing

Lect-18.21

Moore FSM Example — VHDL (cont.)

WHEN S1 =>
IF input ='0" THEN
Moore_state <= S2;
ELSE
Moore_state <= S1;
END IF;
WHEN S2 =>
IF input =0’ THEN
Moore_state <= S0;
ELSE
Moore_state <= S1;
END IF;
END CASE;
END IF;
END PROCESS;

Output <= ‘1" WHEN Moore_state = S2 ELSE ‘0’;

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.22

e-°| Mealy FSM Example — VHDL

TYPE state IS (S0, S1);
SIGNAL Mealy_state: state;

U_Mealy: PROCESS(clock, reset)
BEGIN
IF(reset = ‘1) THEN
Mealy_state <= SO;
ELSIF (clock = ‘1" AND clock’event) THEN
CASE Mealy_state IS
WHEN S0 =>
IF input = ‘1’ THEN
Mealy_state <= S1;
ELSE
Mealy_state <= SO;
END IF;

October 24, 2006 CprE 583 — Reconfigurable Computing

Lect-18.23

Mealy FSM Example — VHDL (cont.)

WHEN S1 =>
IF input =0’ THEN

Mealy_state <= SO;

ELSE
Mealy_state <= S1;

END IF;

END CASE;
END IF;
END PROCESS;

Output <= 1’ WHEN (Mealy_state = S1 AND input = ‘0") ELSE '0’;

October 24, 2006 CprE 583 - Reconfigurable Computing Lect-18.24

State Encoding Problem

- State encoding can have a big influence on
optimality of the FSM implementation

No methods other than checking all possible
encodings are known to produce optimal circuit

Feasible for small circuits only

 Using enumerated types for states in VHDL
leaves encoding problem for synthesis tool

October 24, 2006 CprEE 583 - Reconfigurable Computing Lect-18.25

* | Types of State Encodings

- Binary (Sequential) — States encoded as
consecutive binary numbers

Small number of used flip-flops

Potentially complex transition functions leading
to slow implementations

» One-Hot — only one bit Is active

Number of used flip-flops as big as number of
states

Simple and fast transition functions
Preferable coding technique in FPGAs

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.26

*“ [Manual State Assignment

(ENTITY declaration not shown)

ARCHITECTURE Behavior OF simple IS
TYPE State_type IS (A, B, C) ;
ATTRIBUTE ENUM_ENCODING
ATTRIBUTE ENUM_ENCODING OF State_type
SIGNAL y_present, y_next : State_type ;
BEGIN

: STRING ;
:TYPEIS"0001 11" ;

cont ...

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.28

e Types of State Encodings (cont.)
State Binary Code One-Hot Code
SO0 000 10000000
S1 001 01000000
S2 010 00100000
S3 011 00010000
S4 100 00001000
S5 101 00000100
S6 110 00000010
S7 111 00000001
October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.27
o

Manual State Assignment (cont.)

ARCHITECTURE Behavior OF simple IS
SUBTYPE ABC_STATE is STD_LOGIC_VECTOR(1 DOWNTO 0);

CONSTANT A : ABC_STATE :="00" ;
CONSTANT B : ABC_STATE :="01";
CONSTANT C : ABC_STATE :="11";

SIGNAL y_present, y_next : ABC_STATE;
BEGIN
PROCESS (w, y_present)
BEGIN
CASE y_present IS
WHEN A =>
IFw="0'"THENy next<=A;
ELSEy next<=B;
END IF;
... cont

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.29

e | Serial Adder — Block Diagram

A

: a
Shift register |—'
Adder s

FSM Shift register
Shift register |——
b

Sum = A+B

B

Clock

October 24, 2006 CprE 583 - Reconfigurable Computing Lect-18.30

-| serial Adder FSM

Reset (ab/s)

l 11/0
00/0 01/0
01/1 10/0
10/1 11/1
00/1
G: carry-in = 0
H: carry-in = 1

° Serial Adder FSM — State Table

Present Next state Output s
statt | ah=00 01 10 11|00 01 10 11
G G G G H|O0O 1 1 0
H G H H H|1 0 o0 1
October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.32

e« | Serial Adder — Entity Declaration

1 LIBRARY ieee ;
2 USE ieee.std_logic_1164.all ;

3 ENTITY serial IS

4 GENERIC (length : INTEGER = 8) ;

5 PORT (Clock :IN STD_LOGIC;

6 Reset :IN STD_LOGIC;

7 A B :IN STD_LOGIC_VECTOR(length-1 DOWNTO 0) ;

8 Sum : BUFFER STD_LOGIC_VECTOR(length-1 DOWNTO 0));
9 END serial ;

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.33

e | Serial Adder — Architecture (2)

10 ARCHITECTURE Behavior OF serial IS
11 COMPONENT shiftrne

12 GENERIC (N : INTEGER :=4);

13 PORT (R:IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

14 L,E,w :INSTD_LOGIC;

15 Clock :INSTD_LOGIC;

16 Q : BUFFER STD_LOGIC_VECTOR(N-1 DOWNTO0)) ;

17 END COMPONENT ;
18 SIGNAL QA, QB, Null_in : STD_LOGIC_VECTOR(length-1 DOWNTO 0) ;
19 SIGNAL s, Low, High, Run : STD_LOGIC ;

20 SIGNAL Count : INTEGER RANGE 0 TO length ;

21 TYPE State_type IS (G, H) ;
22 SIGNAL y : State_type ;

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.34

e-| Serial Adder — Architecture (3)

23 BEGIN
24 Low<='0";High<="1";

25 ShiftA: shiftrne GENERIC MAP (N => length)
26 PORT MAP (A, Reset, High, Low, Clock, QA) ;

27 ShiftB: shiftrne GENERIC MAP (N => length)
28 PORT MAP (B, Reset, High, Low, Clock, QB) ;

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.35

e-°| Serial Adder — Architecture (4)
29 AdderFSM: PROCESS (Reset, Clock)
30 BEGIN
31 IF Reset ='1' THEN
32 y<=G;
33 ELSIF Clock'EVENT AND Clock ='1' THEN
34 CASEyIS
35 WHEN G =>
36 IF QA(0) ='1' AND QB(0) ="' THEN y <=H ;
37 ELSEy<=G;
38 END IF;
39 WHEN H =>
40 IF QA(0) ='0' AND QB(0) ='0' THEN y <=G ;
41 ELSEy<=H;
42 END IF;
43 END CASE ;
44 ENDIF;
45 END PROCESS AdderFSM ;

Serial Adder — Architecture (5)

46 WITH y SELECT
a7 s <= QA(0) XOR QB(0) WHEN G,
48 NOT (QA(0) XOR QB(0)) WHEN H ;

49 Null_in <= (OTHERS =>'0) ;

50 ShiftSum: shiftrne GENERIC MAP (N => length)
51 PORT MAP (Null_in, Reset, Run, s, Clock, Sum) ;

October 24, 2006 CprEE 583 - Reconfigurable Computing

Lect-18.37

Serial Adder — Architecture (5)

52 Stop: PROCESS

53 BEGIN

54 WAIT UNTIL (Clock EVENT AND Clock = '1') ;
55 IF Reset ='1' THEN

56 Count <= length ;

57 ELSIF Run ='1' THEN

58 Count <= Count -1 ;

59 END IF;

60 END PROCESS ;
61 Run <='0'WHEN Count =0 ELSE '1'; -- stops counter and ShiftSum
62 END Behavior ;

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.38

Serial Adder - Mealy FSM Circuit

a —=

Full
adder Y y

carry-out b Q

Clock >0

Reset —T

October 24, 2006 CprEE 583 — Reconfigurable Computing

Lect-18.39

Arbiter Circuit

reset
rg ——— g1
2 —— Arbiter -~ g2
r3 —— — g3
clock

October 24, 2006 CprE 583 — Reconfigurable Computing Lect-18.40

Arbiter Moore State Diagram

October 24, 2006

CprE 583 - Reconfigurable Computing

Lect-18.41

Grant Signals — VHDL Code

PROCESS(y)

BEGIN
g(1) <='0";
g(2)<='0";
9(3) <='0";
IFy=gntl THEN g(1) <="1';
ELSIFy =gnt2 THEN g(2) <='1';
ELSIFy =gnt3 THEN g(3) <='1';
END IF;

END PROCESS ;

END Behavior ;

October 24, 2006 CprE 583 - Reconfigurable Computing Lect-18.42

Arbiter Simulation Results

Mame ZEDIDns SDD.‘Dns ?SDIDns 1.Dlus
WPESEIHMJ

pp~ceee [[[L L L
S

-2 |]]

- | |

< of [T

L o2]

o HRNE NN
e e ¥ gnti ant2 ants % ldle

October 24, 2006

CprEE 583 - Reconfigurable Computing

Lect-18.43

