
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #18 –VHDL for Synthesis I

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.2

Recap – 4:1 Multiplexer

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

ENTITY mux4to1 IS
PORT ( w0, w1, w2, w3 : IN STD_LOGIC ;

s : IN STD_LOGIC_VECTOR(1 DOWNTO 0) ;
f : OUT STD_LOGIC ) ;

END mux4to1 ;

ARCHITECTURE dataflow OF mux4to1 IS
BEGIN

WITH s SELECT
f <= w0 WHEN "00",

w1 WHEN "01",
w2 WHEN "10",
w3 WHEN OTHERS ;

END dataflow ;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.3

Recap – N-bit Register with Reset
ENTITY regn IS

GENERIC ( N : INTEGER := 16 ) ;
PORT ( D                     : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;

Resetn, Clock : IN STD_LOGIC ;
Q : OUT STD_LOGIC_VECTOR(N-1 DOWNTO 0) ) ;

END regn ;

ARCHITECTURE Behavior OF regn IS
BEGIN

PROCESS ( Resetn, Clock )
BEGIN

IF Resetn = '0' THEN
Q <= (OTHERS => '0') ;

ELSIF Clock'EVENT AND Clock = '1' THEN
Q <= D ;

END IF ;
END PROCESS ;

END Behavior ;

Resetn

Clock

regn

N N

D Q

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.4

Recap – 4-bit Up-Counter with Reset

Q
Enable

Clock
upcount

4

Resetn

ARCHITECTURE Behavior OF upcount IS
SIGNAL Count : STD_LOGIC_VECTOR (3 DOWNTO 0) ;

BEGIN
PROCESS ( Clock, Resetn )
BEGIN

IF Resetn = '0' THEN
Count <= "0000" ;

ELSIF (Clock'EVENT AND Clock = '1') THEN
IF Enable = '1' THEN

Count <= Count + 1 ;
END IF ;

END IF ;
END PROCESS ;
Q <= Count ;

END Behavior ;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.5

Design Exercise

• Design a simple 32-bit CPU
• Requirements

• Three instruction types: load/store, register ALU, 
branch-if-equal

• 8 32-bit registers
• ALU operations: ADD, SUB, OR, XOR, AND, CMP
• Memory operations: load word, store word

• Components
• Instruction memory / decode
• Register file
• ALU
• Data memory
• Other control

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.6

Outline

• Recap
• Finite State Machines

• Moore Machines
• Mealy Machines

• FSMs in VHDL
• State Encoding
• Example Systems

• Serial Adder
• Arbiter Circuit



2

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.7

Structure of a Typical Digital System

Execution 
Unit

(Datapath)

Control
Unit

(Control)

Data Inputs

Data Outputs

Control Inputs

Control Outputs

Control 
Signals

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.8

Execution Unit (Datapath)

• Provides all necessary resources and 
interconnects among them to perform specified 
task

• Examples of resources
• Adders, multipliers, registers, memories, etc.

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.9

Control Unit (Control)

• Controls data movements in operational circuit 
by switching multiplexers and enabling or 
disabling resources

• Follows some ‘program’ or schedule
• Often implemented as Finite State Machine

or collection of Finite State Machines

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.10

Finite State Machines (FSMs)

• Any circuit with memory Is a Finite State 
Machine
• Even computers can be viewed as huge FSMs

• Design of FSMs involves
• Defining states
• Defining transitions between states
• Optimization / minimization

• Above approach is practical for small FSMs
only

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.11

Moore FSM

• Output is a function of present state only

Present State
Register

Next State
function

Output
function

Inputs

Present StateNext State

Outputs

clock
reset

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.12

Mealy FSM

• Output is a function of a present state and 
inputs

Next State
function

Output
function

Inputs

Present StateNext State

Outputs

Present State
Register

clock
reset



3

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.13

Moore Machine

state 1 /
output 1

state 2 /
output 2

transition
condition 1

transition
condition 2

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.14

Mealy Machine

state 1 state 2

transition condition 1 /
output 1

transition condition 2 /
output 2

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.15

Moore vs. Mealy FSM

• Moore and Mealy FSMs can be functionally 
equivalent
• Equivalent Mealy FSM can be derived from 

Moore FSM and vice versa
• Mealy FSM has richer description and usually 

requires smaller number of states
• Smaller circuit area

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.16

Moore vs. Mealy FSM (cont.)

• Mealy FSM computes outputs as soon as 
inputs change
• Mealy FSM responds one clock cycle sooner 

than equivalent Moore FSM
• Moore FSM has no combinational path 

between inputs and outputs
• Moore FSM is more likely to have a shorter 

critical path

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.17

Moore FSM Example

• Moore FSM that recognizes sequence “10”

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Meaning 
of states:

S0: No 
elements 
of the 
sequence
observed

S1: “1”
observed

S2: “10”
observed

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.18

Mealy FSM Example

• Mealy FSM that recognizes sequence “10”

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1reset

Meaning 
of states:

S0: No 
elements 
of the 
sequence
observed

S1: “1”
observed



4

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.19

Mealy FSM Example (cont.)

clock

input

Moore

Mealy

0             1              0             0              0

S0           S1           S2           S0          S0

S0           S1           S0           S0          S0

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.20

FSMs in VHDL

• Finite State Machines can be easily described 
with processes

• Synthesis tools understand FSM description if 
certain rules are followed
• State transitions should be described in a 

process sensitive to clock and asynchronous 
reset signals only

• Outputs described as concurrent statements
outside the process

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.21

Moore FSM Example – VHDL

TYPE state IS (S0, S1, S2);
SIGNAL Moore_state: state;

U_Moore: PROCESS (clock, reset)
BEGIN

IF(reset = ‘1’) THEN
Moore_state <= S0;

ELSIF (clock = ‘1’ AND clock’event) THEN
CASE Moore_state IS

WHEN S0 =>
IF input = ‘1’ THEN

Moore_state <= S1; 
ELSE

Moore_state <= S0;
END IF;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.22

Moore FSM Example – VHDL (cont.)
WHEN S1 =>

IF input = ‘0’ THEN 
Moore_state <= S2; 

ELSE
Moore_state <= S1; 

END IF;
WHEN S2 =>

IF input = ‘0’ THEN
Moore_state <= S0; 

ELSE 
Moore_state <= S1; 

END IF;
END CASE;

END IF;
END PROCESS;

Output <= ‘1’ WHEN Moore_state = S2 ELSE ‘0’;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.23

Mealy FSM Example – VHDL

TYPE state IS (S0, S1);
SIGNAL Mealy_state: state;

U_Mealy: PROCESS(clock, reset)
BEGIN

IF(reset = ‘1’) THEN
Mealy_state <= S0;

ELSIF (clock = ‘1’ AND clock’event) THEN
CASE Mealy_state IS

WHEN S0 =>
IF input = ‘1’ THEN 

Mealy_state <= S1; 
ELSE

Mealy_state <= S0;
END IF;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.24

Mealy FSM Example – VHDL (cont.)
WHEN S1 =>
IF input = ‘0’ THEN

Mealy_state <= S0; 
ELSE

Mealy_state <= S1;
END IF;

END CASE;
END IF;

END PROCESS;

Output <= ‘1’ WHEN (Mealy_state = S1 AND input = ‘0’) ELSE ‘0’;



5

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.25

State Encoding Problem

• State encoding can have a big influence on 
optimality of the FSM implementation
• No methods other than checking all possible 

encodings are known to produce optimal circuit
• Feasible for small circuits only

• Using enumerated types for states in VHDL 
leaves encoding problem for synthesis tool

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.26

Types of State Encodings

• Binary (Sequential) – States encoded as 
consecutive binary numbers
• Small number of used flip-flops
• Potentially complex transition functions leading 

to slow implementations
• One-Hot – only one bit Is active

• Number of used flip-flops as big as number of 
states

• Simple and fast transition functions
• Preferable coding technique in FPGAs

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.27

Types of State Encodings (cont.)

00000001111S7
00000010110S6
00000100101S5
00001000100S4
00010000011S3
00100000010S2
01000000001S1
10000000000S0

One-Hot CodeBinary CodeState

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.28

Manual State Assignment

(ENTITY declaration not shown)

ARCHITECTURE Behavior OF simple IS
TYPE State_type IS (A, B, C) ;
ATTRIBUTE ENUM_ENCODING : STRING ;
ATTRIBUTE ENUM_ENCODING OF State_type : TYPE IS "00 01 11" ;
SIGNAL y_present, y_next : State_type ;

BEGIN

cont ...

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.29

ARCHITECTURE Behavior OF simple IS
SUBTYPE  ABC_STATE is STD_LOGIC_VECTOR(1 DOWNTO 0);

CONSTANT A : ABC_STATE := "00" ;
CONSTANT B : ABC_STATE := "01" ;
CONSTANT C : ABC_STATE := "11" ;

SIGNAL y_present, y_next : ABC_STATE;
BEGIN

PROCESS ( w, y_present )
BEGIN

CASE y_present IS
WHEN A =>

IF w = '0' THEN y_next <= A ;
ELSE y_next <= B ;
END IF ;

… cont

Manual State Assignment (cont.)

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.30

Serial Adder – Block Diagram

Sum A B + = 

Shift register

Shift register

Adder 
FSM Shift register

B 

A 

a 

b 

s 

Clock 



6

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.31

Serial Adder FSM

G 

00 1 ⁄ 

11 1 ⁄ 
10 0 ⁄ 
01 0 ⁄ 

H 
10 1 ⁄ 
01 1 ⁄ 
00 0 ⁄ 

carry-in 0 = 
carry-in 1 = 

G:
H:

Reset 
11 0 ⁄ 
ab s ⁄ ( ) 

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.32

Serial Adder FSM – State Table

Present Next state Output s
state ab =00 01 10 11 00 01 10 11

G G G G H 0 1 1 0 
H G H H H 1 0 0 1 

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.33

Serial Adder – Entity Declaration

1   LIBRARY ieee ;
2   USE ieee.std_logic_1164.all ;

3   ENTITY serial IS
4    GENERIC ( length : INTEGER := 8 ) ;
5 PORT ( Clock : IN STD_LOGIC ;
6 Reset : IN STD_LOGIC ;
7 A, B : IN STD_LOGIC_VECTOR(length-1 DOWNTO 0) ;
8 Sum : BUFFER STD_LOGIC_VECTOR(length-1 DOWNTO 0));
9   END serial ;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.34

Serial Adder – Architecture (2)

10  ARCHITECTURE Behavior OF serial IS

11 COMPONENT shiftrne
12 GENERIC ( N : INTEGER := 4 ) ;
13 PORT ( R : IN STD_LOGIC_VECTOR(N-1 DOWNTO 0) ;
14 L, E, w : IN STD_LOGIC ;
15 Clock : IN STD_LOGIC ;
16 Q : BUFFER STD_LOGIC_VECTOR(N-1 DOWNTO 0) ) ;
17  END COMPONENT ;

18  SIGNAL QA, QB, Null_in : STD_LOGIC_VECTOR(length-1 DOWNTO 0) ;

19 SIGNAL s, Low, High, Run : STD_LOGIC ;

20 SIGNAL Count : INTEGER RANGE 0 TO length ;

21 TYPE State_type IS (G, H) ;
22 SIGNAL y : State_type ;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.35

Serial Adder – Architecture (3)

23 BEGIN

24 Low <= '0' ; High <= '1' ;

25 ShiftA: shiftrne GENERIC MAP (N => length)
26 PORT MAP ( A, Reset, High, Low, Clock, QA ) ;

27  ShiftB: shiftrne GENERIC MAP (N => length)
28 PORT MAP ( B, Reset, High, Low, Clock, QB ) ;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.36

Serial Adder – Architecture (4)

29  AdderFSM: PROCESS ( Reset, Clock )
30  BEGIN
31 IF Reset = '1' THEN
32 y <= G ;
33 ELSIF Clock'EVENT AND Clock = '1' THEN
34 CASE y IS
35 WHEN G =>
36 IF QA(0) = '1' AND QB(0) = '1' THEN y <= H ;
37 ELSE y <= G ;
38 END IF ;
39 WHEN H =>
40 IF QA(0) = '0' AND QB(0) = '0' THEN y <= G ;
41 ELSE y <= H ;
42 END IF ;
43 END CASE ;
44 END IF ;
45 END PROCESS AdderFSM ;



7

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.37

Serial Adder – Architecture (5)

46 WITH y SELECT
47 s <= QA(0) XOR QB(0) WHEN G,
48 NOT ( QA(0) XOR QB(0) ) WHEN H ;

49 Null_in <= (OTHERS => '0') ;

50 ShiftSum: shiftrne GENERIC MAP ( N => length )
51 PORT MAP ( Null_in, Reset, Run, s, Clock, Sum ) ;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.38

Serial Adder – Architecture (5)

52 Stop: PROCESS
53 BEGIN
54 WAIT UNTIL (Clock'EVENT AND Clock = '1') ;
55 IF Reset = '1' THEN
56 Count <= length ;
57 ELSIF Run = '1' THEN
58 Count <= Count -1 ;
59 END IF ;
60 END PROCESS ;

61 Run <= '0' WHEN Count = 0 ELSE '1' ;  -- stops counter and ShiftSum

62   END Behavior ;

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.39

Serial Adder - Mealy FSM Circuit

Full
adder

a
b

s

D Q

Q

carry-out

Clock

Reset

Y y

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.40

Arbiter Circuit

Arbiter

reset

r1

r2

r3

g1

g2

g3

clock

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.41

Idle

000 

1xx 

Reset 

gnt1 g 1 ⁄ 1 = 

x1x 

gnt2 g 2 ⁄ 1 = 

xx1 

gnt3 g 3 ⁄ 1 = 

0xx 1xx 

01x x0x 

001 xx0 

Arbiter Moore State Diagram

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.42

.

.

.
PROCESS( y )
BEGIN

g(1) <= '0' ;
g(2) <= '0' ;
g(3) <= '0' ;
IF y = gnt1 THEN g(1) <= '1' ;
ELSIF y = gnt2 THEN g(2) <= '1' ;
ELSIF y = gnt3 THEN g(3) <= '1' ;
END IF ;

END PROCESS ;
END Behavior ;

Grant Signals – VHDL Code



8

CprE 583 – Reconfigurable ComputingOctober 24, 2006 Lect-18.43

Arbiter Simulation Results


