CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
lowa State University

Lecture #21 — HW/SW Codesign

HW #4 Discussion

- Problem 1 — did just a simple adder work?

« Problem 2 — how did you implement the
permutation table?

- Problem 3 — did you use a counter?

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-213

Overview of AES (cont.)

+ 128-bit input is copied into a two-dimensional (4x4)
byte array referred to as the state
Round transformations operate on the state array
Final state copied back into 128-bit output
- AES makes use of a non-linear substitution function
that operates on a single byte
Can be simplified as a look-up table (S-box)

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.5

*““| Quick Points
Grade Histogram
10,7}
[7,13))
113, 20)
[20, 27)
[27,33)
[33,40)
& 140,47
g
5 147,53)
¥ 153,60}
5
160,67
167, 73)
173, 80)
180, 87))
187, 93)
[93, 100
[1o00]
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.253.50 3.75 4.00 4.25 450 4.75 5.00 525
Frecjuency
November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.2
o-| AES-128E Algorithm
= Round Transformation
S
ki
E . .
u% ShiftRows MixColumns
3
¢ \ \
{AddRoundKeyH SubBytes }
round++
round = 10?
November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.4
[]

AES-128E Modules: SubBytes

SubBytes

« S-box transformation performed independe
byte of the state

November 2, 2006 CprE 583 ~ Reconfigurable Computing Lect-21.6

el AES-128E Modules: ShiftRows
ShiftRows \

- Bytes in the last three rows of the state are
cyclically over variable offsets

November 2, 2006 CprEE 583 — Reconfigurable Computing Lect-217

el AES-128E Modules: MixColumns

MixColumns

» Modulo polynomial-basis multiplication performed
of the state

- Can be simplified as series of AND and XOR operations

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.8

*“| MixColumns Implementation

entity MixColumns is -- Multiply by 2
t1:= STATE_IN(i mod 4)(j)(6 downto 0) & '0";
port (STATE_IN :in STATEtype; if (STATE_IN(i mod 4)(j)(7) = '1') then
RNUM_IN :in RNUMtype; t1:=tl xor x"1b";
STATE_OUT : out STATEtype); end if;
end MixColumns; -- Multiply by 3
t2 := STATE_IN((i+1) mod 4)(j)(6 downto 0) & '0';
architecture behavior of MixColumns is if (STATE_IN((i+1) mod 4)(j)(7) ='1') then
signal tSTATE : STATEtype; t2 :=t2 xor x"1b";
end if;
begin t2 :=t2 xor STATE_IN((i+1) mod 4)(j);

process(STATE_IN) tSTATE(i)(j) <= t1 xor t2 xor STATE_IN((i+2) mod
variable t1, t2 : std_logic_vector(7 4)(j) xor STATE_IN((i+3) mod 4)(j);
downto 0);
begin end loop;
foriin0to 3loop end loop;
forjin 0 to Nb-1 loop

end process;

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-219

*“°| AES-128E Modules: AddRoundKey

AddRoundKey

« Words from the round-specific key are XOR
columns of the state

Novermber 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.10

*-°| AddRoundKey Implementation

entity AddRoundKey is
port(STATE_IN 1 in STATEtype;
KEY_IN 1 in KEYtype;
STATE_OUT : out STATEtype);
end AddRoundKey;

architecture behavior of AddRoundKey is
begin

process(STATE_IN, KEY_IN)
begin

for jin 0 to (Nb-1) loop
STATE_OUT(0)(j) <= STATE_IN(0)(j) xor KEY_IN(j)(31 downto 24);
STATE_OUT(1)(j) <= STATE_IN(1)()) xor KEY_IN(j)(23 downto 16);
STATE_OUT(2)(j) <= STATE_IN(2)(j) xor KEY_IN(j)(15 downto 8);
STATE_OUT(3)(j) <= STATE_IN(3)(j) xor KEY_IN(j)(7 downto 0);
end loop;

end process;

end behavior;

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.11

AES-128E Modules: KeyExpansion
\

KeyExpansion

wn » »n »n

- Initial 128-bit key is converted into separate keys e 10
required rounds

« Consists of Sbox transformations and some XORs

November 2, 2006 CprE 583 ~ Reconfigurable Computing Lect-21.12

¢“"| Design Decisions

« Online/offline key generation

« Inter-round layout decisions
Round unrolling
Round pipelining

« Intra-round layout decisions
Transformation pipelining
Transformation partitioning

« Technology mapping decisions
S-box synthesis as Block SelectRAM,
distributed ROM primitives, or logic gates

November 2, 2006 CprEE 583 — Reconfigurable Computing Lect-21.13

° | Round Unrolling / Pipelining (cont.)

Wimnad | limog et tor =10
Round pipelining = ON

1

A J

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.15

°=“| Round Unrolling / Pipelining
- Unrolling replaces a loop body (round) with N copies
of that loop body
- AES-128E algorithm is a loop that iterates 10 times
-Nel[1,10]
N = 1 corresponds to original looping case
N =10 is a fully unrolled implementation
- Pipelining is a technique that increases the number
of blocks of data that can be processed concurrently
Pipelining in hardware can be implemented by
inserting registers
Unrolled rounds can be split into a certain number of
pipeline stages
+ These transformations will increase throughput but
increase area and latency
°

Transformation Partitioning/Pipelining

- FPGA maximum clock frequency depends on
critical logic path
Inter-round transformations can’t improve
critical path
Individual transformations can be pipelined with
registers similar to the rounds
Transformations that are part of the maximum
delay path can be partitioned and pipelined as
well
+ Can result in large gains in throughput with
only minimal area increases

Novermber 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.16

e« Partitioning / Pipelining (cont.)

Transformation pipelining = ON
Transformation partitioning = ON

SubBytes ShiftRows MixColumns

yExpansion, pansion yExpansion|

\

.

November 2, 2006 CprEE 583 — Reconfigurable Computing Lect-21.17

S-box Technology Mapping

+ With synthesis primitives, can map the S-box
lookup tables to different hardware
components

« Two S-boxes can fit on a single Block
SelectRAM

constant : string := “select_rom”; -- {logic, select_rom}
entity Sbox is

port(: in std_logic_vector(7 downto 0);
: out std_logic_vector(7 downto 0));

attribute syn_romstyle : string;
attribute syn_romstyle of BYTE_OUT : signal is SSYNROMSTYLE;

end Sbhox; Sample VHDL code

November 2, 2006 CprE 583 ~ Reconfigurable Computing Lect-21.18

° | Recap — Retiming

1 1 1 1
Observable 11O

N

Observable /O

S e

CprEE 583 — Reconfigurable Computing Lect-21.19

External /O

5

5

November 2, 2006

° | Recap — Retiming (cont.)

Observable /O

Observable I/O

No-5-dob

weight(e’) = weight(e) + lag(head(e)) - lag(tail(e))

November 2, 2006

CprE 583 — Reconfigurable Computing Lect-21.20

*“| Retiming and Pipelining

il

« Can use this retiming to pipeline

- Assume have enough (infinite supply) of
registers at edge of circuit

+ Retime them into circuit
- See [WeaMar03A] for details

External /0

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.21

° | Recap — Retiming and Covering

Novermber 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.22

° Outline

« HW #4 Discussion

* Recap

+ HW/SW Codesign
Motivation
Specification
Partitioning
Automation

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.23

e-°| Hardware/Software Codesign

Definition 1 — the concurrent and co-operative
design of hardware and software components
of an embedded system

Definition 2 — A design methodology supporting
the cooperative and concurrent development of
hardware and software (co-specification, co-
development, and co-verification) in order to
achieve shared functionality and performance
goals for a combined system [MicGup97A]

November 2, 2006 CprE 583 ~ Reconfigurable Computing Lect-21.24

. Motivation

Not possible to put everything in
hardware due to limited resources

- Some code more appropriate for
sequential implementation
Desirable to allow for parallelization,
serialization

Possible to modify existing compilers to
perform the task

November 2, 2006 CprEE 583 — Reconfigurable Computing Lect-21.25

°-“| Why put CPUs on FPGAs?

+ Shrink a board to a chip
» What CPUs do best:
Irregular code

Code that takes advantage of a highly optimized
datapath

- What FPGAs do best:
Data-oriented computations
Computations with local control

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.26

e-“| Computational Model

Memory

Memoryj
bus

FPGA

Most recent work addressing this problem
assumes relatively slow bus interface
FPGA has direct interface to memory in this
model

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.27

° | Hardware/Software Partitioning

if (foo < 8) {
for (i=0; i<N; i++)
x[i] = y[i1*z[i];

’ \
CPU | HW
Accelerator
November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.28

*“°| Methodology

- Separation between function, and communication

- Unified refinable formal specification model
Facilitates system specification
Implementation independent

Eases HW/SW trade-off evaluation and partitioning

- From a more practical perspective:
Measure the application
Identify what to put onto the accelerator
Build interfaces

November 2, 2006 CprE 583 - Rect

le Computing Lect-21.29

e-°| System-Level Methodology

Informal Specification,
Constraints

System model

Component
profiling

Success

Implementation

CprE 583 ~ Reconfigurable Computing Lect-21.30

Concurrency

+ Concurrent applications provide the most
speedup

\ No data dependencies
if(@>h)... x[i]'= yIil * 2[i]
CPU accelerator

y

November 2, 2006 CprEE 583 — Reconfigurable Computing Lect-2131

*"| Partitioning

- Can divide the application into several
processes that run concurrently

» Process partitioning exposes opportunities
for parallelism

if (i>b) ... Process 1 ‘

for (i=0; i<N; i++) ... Process 2

for (j=0; j<N; j++) ... Process 3

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.32

| Automating System Partitioning
process (a, b, ¢) Line () Interface
in porta, b; { /
out port c; Partition a=.. _
read(a); - aélach
\’A‘/’nte(c); Capture

Synthesize

Specification Processor

+ Good partitioning mechanism:
1)Minimize communication across bus
2)Allows parallelism = both hardware (FPGA)
and processor operating concurrently

3)Near peak processor utilization at all times
(performing useful work)

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.33

e | Partitioning Algorithms

Software 1

Hardware

List of tasks I List of tasks

- Assume everything initially in software
- Select task for swapping
» Migrate to hardware and evaluate cost
Timing, hardware resources, program and data storage,
synchronization overhead
- Cost evaluation and move evaluation similar to what
we've seen regarding mincut and simulated annealing

Novermber 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.34

| Multi-threaded Systems
- Single thread:
- Multi-thread:
Eg] L]
> %ﬂ D0
B

November 2, 2006 CprEE 583 — Reconfigurable Computing Lect-21.35

e-°| Performance Analysis

- Single threaded: - Multi-threaded with no
Find longest possible synchronization:
execution path Find the longest of

several execution paths
+ Multi-threaded with
synchronization:
Find the worst-case
synchronization
conditions

November 2, 2006 CprE 583 ~ Reconfigurable Computing Lect-21.36

Multi-threaded Performance Analysis

- Synchronization causes the delay along one
path to affect the delay along another

t, t,
[] synchronization point
tc 1:d

Delay = max(t,, t,) + ty

November 2, 2006 CprEE 583 — Reconfigurable Computing Lect-21.37

° Control

- Need to signal between CPU and accelerator
Data ready
Complete
- Implementations:
Shared memory
Handshake
« If computation time is very predictable, a
simpler communication scheme may be
possible

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.38

Communication Levels

Send, Receive, Wait

Application
Program
Operating
System
Register reads/writes
/O driver [~

Interrupt service

Bus transactions
Interrupts

1/0 bus

- Easier to program at application level
(send, receive, wait) but difficult to predict
- More difficult to specify at low level

Difficult to extract from program but timing and
resources easier to predict

November 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.39

o=l Other Interface Models

« Synchronization through a FIFO

« FIFO can be implemented either in hardware or in
software

- Effectively reconfigure hardware (FPGA) to allocate
buffer space as needed

« Interrupts used for software version of FIFO

r3

pl p2 p3
CP I
di Control/Data FIFO
a2 d3

CprE 583 — Reconfigurable Computing Lect-21.40

November 2, 2006

Debugging

- Hard to test a CPU/accelerator system:

Hard to control and observe the accelerator
without the CPU

Software on CPU may have bugs
- Build separate test benches for CPU code,
accelerator
- Test integrated system after components have
been tested

November 2, 2006 CprEE 583 — Reconfigurable Computing Lect-21.41

-| POLIS Codesign Methodology

Graphical EFSM ESTEREL | | oo

\—‘ Compilers ‘—/

Formal
Verification

Partitioning

Sw Synthesis) Hw Synthesig

Intfc + RTOS
1 Synthesis 1

Sw Code + Logic Netlist

RTOS \

Rapid prototyping

Simulation

November 2, 2006 CprE 583 ~ Reconfigurable Computing Lect-21.42

e-°| Codesign Finite State Machines

+ POLIS uses an FSM model for
Uncommitted
Synthesizable
Verifiable
Control-dominated HW/SW specification

» Translators from
State diagrams,
Esterel, ECL, ReactiveJava
HDLs
Into a single FSM-based language

November 2, 2006

CprEE 583 — Reconfigurable Computing Lect-21.43

CFSM behavior

Four-phase cycle:
Idle
Detect input events
Execute one transition
Emit output events

Software response could take a long time:
Unbounded delay assumption

Need efficient hw/sw communication primitive:
Event-based point-to-point communication

jovember 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.44

° | Network of CFSMs

+ Globally Asynchronous, Locally Synchronous
(GALS) model

= 5 O—0

jl-‘NG==1;
CFs(M)l/C;A 4% O CFSM2
Qo o

(A==0)=>B

CFSM3

November 2, 2006

CprE 583 — Reconfigurable Computing Lect-21.45

Summary

Hardware/software codesign complicated
and limited by performance estimates
Algorithms not generally as good as
human partitioning

Other interesting issues include dual
processors, special memory interfaces
Will likely evolve at faster rate as
compilers evolve

Novermber 2, 2006 CprE 583 — Reconfigurable Computing Lect-21.46

