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process (a, b, c)
in port a, b;
out port c;

{
read(a);
…
write(c);

}

Specification

Line ()
{

a = …
…
detach

}

Processor

Capture

Model FPGA

Partition

Synthesize

Interface

Recap – HW/SW Partitioning

• Good partitioning mechanism:
1)Minimize communication across bus
2)Allows parallelism both hardware (FPGA) 

and processor operating concurrently
3)Near peak processor utilization at all times 

(performing useful work)
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Recap – Communication and Control

• Need to signal between CPU and accelerator
• Data ready
• Complete

• Implementations:
• Shared memory
• FIFO
• Handshake

• If computation time is very predictable, a 
simpler communication scheme may be 
possible
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Informal Specification,
Constraints

System model

Architecture design

HW/SW implementation

PrototypeTest

Implementation

Fail

Success

Component
profiling

Performance
evaluation

Recap – System-Level Methodology
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Outline

• Recap
• Multicontext

• Motivation
• Cost analysis
• Hardware support
• Examples
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Single Context

• When we have
• Cycles and no data parallelism
• Low throughput, unstructured tasks
• Dissimilar data dependent tasks

• Active resources sit idle most of the time
• Waste of resources

• Why?
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Single Context: Why?

• Cannot reuse resources to perform different
functions, only the same functions
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Multiple-Context LUT

• Configuration selects operation of computation unit
• Context identifier changes over time to allow change in 

functionality
• DPGA – Dynamically Programmable Gate Array
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A
B F0 F1 F2

Non-pipelined example

Computations that Benefit

• Low throughput tasks
• Data dependent operations

• Effective if not all resources active 
simultaneously

• Possible to time-multiplex both logic and 
routing resources
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Computations that Benefit (cont.)
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Computations that Benefit (cont.)
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Resource Reuse

• Resources must be directed to do 
different things at different times through 
instructions

• Different local configurations can be 
thought of as instructions

• Minimizing the number and size of 
instructions a key to successfully 
achieving efficient design

• What are the implications for the 
hardware?
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Example: ASCII – Binary Conversion

• Input: ASCII Hex character
• Output: Binary value

signal input : std_logic_vector(7 downto 0);
signal output : std_logic_vector(3 downto 0);
process (input)
begin

end process;

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.14

ASCII – Binary Conversion Circuit
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Implementation #1 Implementation #2
NA= 3 NA= 4

Implementation Choices

• Both require same amount of execution time
• Implementation #1 more resource efficient
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Interconnect
Mux

Logic Reuse

•Actxt≈80Kλ2

• dense encoding
•Abase≈800Kλ2

* Each context not overly costly 
compared to base cost of wire, 
switches, IO circuitry

Question: How does this effect scale? 

Previous Study [Deh96B]
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DPGA Prototype
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• Assume ideal packing: Nactive = Ntotal/L
• Reminder: c*Actxt = Abase 
• Difficult to exactly balance resources/demands
• Needs for contexts may vary across applications
• Robust point where critical path length equals # contexts

Multicontext Tradeoff Curves
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In Practice

• Scheduling limitations
• Retiming limitations
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Scheduling Limitations

• NA (active)
• Size of largest stage

• Precedence: 
• Can evaluate a LUT only after predecessors 

have been evaluated
• Cannot always, completely equalize stage 

requirements
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Scheduling

• Precedence limits packing freedom
• Freedom shows up as slack in network
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Scheduling

• Computing Slack:
• ASAP (As Soon As Possible) Schedule

• propagate depth forward from primary inputs
• depth = 1 + max input depth

• ALAP (As Late As Possible) Schedule
• propagate distance from outputs back from outputs

• level = 1 + max output consumption level

• Slack
• slack = L+1-(depth+level)  [PI depth=0, PO level=0]
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Allowable Schedules

Active LUTs (NA) = 3
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Sequentialization

• Adding time slots 
• More sequential (more latency)
• Adds slack

• Allows better balance

L=4 →NA=2 (4 or 3 contexts)
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Multicontext Scheduling

• “Retiming” for multicontext
• goal: minimize peak resource requirements

• NP-complete
• List schedule, anneal

• How do we accommodate intermediate data?
• Effects?
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Signal Retiming

• Non-pipelined 
• hold value on LUT Output (wire) 

• from production through consumption

• Wastes wire and switches by occupying
• For entire critical path delay L
• Not just for 1/L’th of cycle takes to cross wire 

segment

• How will it show up in multicontext?
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Signal Retiming

• Multicontext equivalent
• Need LUT to hold value for each intermediate 

context
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• Logically three levels of 
dependence

• Single Context: 
21 LUTs @ 880Kλ2=18.5Mλ2

Full ASCII Hex Circuit
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• Three contexts: 
12 LUTs @ 1040Kλ2=12.5Mλ2

• Pipelining needed for 
dependent paths

Multicontext Version
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ASCII→Hex Example 
• All retiming on wires (active outputs)

• Saturation based on inputs to largest stage
• With enough contexts only one LUT needed
• Increased LUT area due to additional stored configuration 

information
• Eventually additional interconnect savings taken up by LUT 

configuration overhead

Ideal≡Perfect scheduling spread + no retime overhead
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@ depth=4, c=6: 5.5Mλ2 (compare 18.5Mλ2 )

ASCII→Hex Example (cont.)
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General Throughput Mapping

• If only want to achieve limited throughput
• Target produce new result every t cycles
• Spatially pipeline every t stages 

• cycle = t 
• Retime to minimize register requirements
• Multicontext evaluation w/in a spatial stage

• Retime (list schedule) to minimize resource 
usage 

• Map for depth (i) and contexts (c)
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• 23 MCNC circuits
• Area mapped with SIS and Chortle

Benchmark Set

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.34

Area v. Throughput
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Area v. Throughput (cont.)
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Reconfiguration for Fault Tolerance

• Embedded systems require high reliability in 
the presence of transient or permanent faults

• FPGAs contain substantial redundancy 
• Possible to dynamically “configure around”

problem areas
• Numerous on-line and off-line solutions
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• Huang and McCluskey
• Assume that each FPGA column is 

equivalent in terms of logic and routing
• Preserve empty columns for future use
• Somewhat wasteful

• Precompile and compress differences in 
bitstreams

Column Based Reconfiguration
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• Create multiple copies of the same design with 
different unused columns

• Only requires different inter-block connections
• Can lead to unreasonable configuration count

Column Based Reconfiguration
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• Determining differences and compressing the 
results leads to “reasonable” overhead

• Scalability and fault diagnosis are issues

Column Based Reconfiguration
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Summary

• In many cases cannot profitably reuse logic at 
device cycle rate
• Cycles, no data parallelism
• Low throughput, unstructured
• Dissimilar data dependent computations

• These cases benefit from having more than 
one instructions/operations per active element

• Economical retiming becomes important here 
to achieve active LUT reduction

• For c=[4,8], I=[4,6] automatically mapped 
designs are 1/2 to 1/3 single context size


