
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #22 – Multi-Context FPGAs

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.2

process (a, b, c)
in port a, b;
out port c;

{
read(a);
…
write(c);

}

Specification

Line ()
{

a = …
…
detach

}

Processor

Capture

Model FPGA

Partition

Synthesize

Interface

Recap – HW/SW Partitioning

• Good partitioning mechanism:
1)Minimize communication across bus
2)Allows parallelism both hardware (FPGA)

and processor operating concurrently
3)Near peak processor utilization at all times

(performing useful work)

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.3

Recap – Communication and Control

• Need to signal between CPU and accelerator
• Data ready
• Complete

• Implementations:
• Shared memory
• FIFO
• Handshake

• If computation time is very predictable, a
simpler communication scheme may be
possible

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.4

Informal Specification,
Constraints

System model

Architecture design

HW/SW implementation

PrototypeTest

Implementation

Fail

Success

Component
profiling

Performance
evaluation

Recap – System-Level Methodology

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.5

Outline

• Recap
• Multicontext

• Motivation
• Cost analysis
• Hardware support
• Examples

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.6

Single Context

• When we have
• Cycles and no data parallelism
• Low throughput, unstructured tasks
• Dissimilar data dependent tasks

• Active resources sit idle most of the time
• Waste of resources

• Why?

2

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.7

Single Context: Why?

• Cannot reuse resources to perform different
functions, only the same functions

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.8

Multiple-Context LUT

• Configuration selects operation of computation unit
• Context identifier changes over time to allow change in

functionality
• DPGA – Dynamically Programmable Gate Array

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.9

A
B F0 F1 F2

Non-pipelined example

Computations that Benefit

• Low throughput tasks
• Data dependent operations

• Effective if not all resources active
simultaneously

• Possible to time-multiplex both logic and
routing resources

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.10

Computations that Benefit (cont.)

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.11

Computations that Benefit (cont.)

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.12

Resource Reuse

• Resources must be directed to do
different things at different times through
instructions

• Different local configurations can be
thought of as instructions

• Minimizing the number and size of
instructions a key to successfully
achieving efficient design

• What are the implications for the
hardware?

3

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.13

Example: ASCII – Binary Conversion

• Input: ASCII Hex character
• Output: Binary value

signal input : std_logic_vector(7 downto 0);
signal output : std_logic_vector(3 downto 0);
process (input)
begin

end process;

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.14

ASCII – Binary Conversion Circuit

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.15

Implementation #1 Implementation #2
NA= 3 NA= 4

Implementation Choices

• Both require same amount of execution time
• Implementation #1 more resource efficient

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.16

Interconnect
Mux

Logic Reuse

•Actxt≈80Kλ2

• dense encoding
•Abase≈800Kλ2

* Each context not overly costly
compared to base cost of wire,
switches, IO circuitry

Question: How does this effect scale?

Previous Study [Deh96B]

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.17

DPGA Prototype

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.18

• Assume ideal packing: Nactive = Ntotal/L
• Reminder: c*Actxt = Abase
• Difficult to exactly balance resources/demands
• Needs for contexts may vary across applications
• Robust point where critical path length equals # contexts

Multicontext Tradeoff Curves

4

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.19

In Practice

• Scheduling limitations
• Retiming limitations

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.20

Scheduling Limitations

• NA (active)
• Size of largest stage

• Precedence:
• Can evaluate a LUT only after predecessors

have been evaluated
• Cannot always, completely equalize stage

requirements

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.21

Scheduling

• Precedence limits packing freedom
• Freedom shows up as slack in network

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.22

Scheduling

• Computing Slack:
• ASAP (As Soon As Possible) Schedule

• propagate depth forward from primary inputs
• depth = 1 + max input depth

• ALAP (As Late As Possible) Schedule
• propagate distance from outputs back from outputs

• level = 1 + max output consumption level

• Slack
• slack = L+1-(depth+level) [PI depth=0, PO level=0]

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.23

Allowable Schedules

Active LUTs (NA) = 3

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.24

Sequentialization

• Adding time slots
• More sequential (more latency)
• Adds slack

• Allows better balance

L=4 →NA=2 (4 or 3 contexts)

5

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.25

Multicontext Scheduling

• “Retiming” for multicontext
• goal: minimize peak resource requirements

• NP-complete
• List schedule, anneal

• How do we accommodate intermediate data?
• Effects?

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.26

Signal Retiming

• Non-pipelined
• hold value on LUT Output (wire)

• from production through consumption

• Wastes wire and switches by occupying
• For entire critical path delay L
• Not just for 1/L’th of cycle takes to cross wire

segment

• How will it show up in multicontext?

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.27

Signal Retiming

• Multicontext equivalent
• Need LUT to hold value for each intermediate

context

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.28

• Logically three levels of
dependence

• Single Context:
21 LUTs @ 880Kλ2=18.5Mλ2

Full ASCII Hex Circuit

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.29

• Three contexts:
12 LUTs @ 1040Kλ2=12.5Mλ2

• Pipelining needed for
dependent paths

Multicontext Version

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.30

ASCII→Hex Example
• All retiming on wires (active outputs)

• Saturation based on inputs to largest stage
• With enough contexts only one LUT needed
• Increased LUT area due to additional stored configuration

information
• Eventually additional interconnect savings taken up by LUT

configuration overhead

Ideal≡Perfect scheduling spread + no retime overhead

6

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.31

@ depth=4, c=6: 5.5Mλ2 (compare 18.5Mλ2)

ASCII→Hex Example (cont.)

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.32

General Throughput Mapping

• If only want to achieve limited throughput
• Target produce new result every t cycles
• Spatially pipeline every t stages

• cycle = t
• Retime to minimize register requirements
• Multicontext evaluation w/in a spatial stage

• Retime (list schedule) to minimize resource
usage

• Map for depth (i) and contexts (c)

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.33

• 23 MCNC circuits
• Area mapped with SIS and Chortle

Benchmark Set

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.34

Area v. Throughput

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.35

Area v. Throughput (cont.)

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.36

Reconfiguration for Fault Tolerance

• Embedded systems require high reliability in
the presence of transient or permanent faults

• FPGAs contain substantial redundancy
• Possible to dynamically “configure around”

problem areas
• Numerous on-line and off-line solutions

7

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.37

• Huang and McCluskey
• Assume that each FPGA column is

equivalent in terms of logic and routing
• Preserve empty columns for future use
• Somewhat wasteful

• Precompile and compress differences in
bitstreams

Column Based Reconfiguration

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.38

• Create multiple copies of the same design with
different unused columns

• Only requires different inter-block connections
• Can lead to unreasonable configuration count

Column Based Reconfiguration

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.39

• Determining differences and compressing the
results leads to “reasonable” overhead

• Scalability and fault diagnosis are issues

Column Based Reconfiguration

CprE 583 – Reconfigurable ComputingNovember 7, 2006 Lect-22.40

Summary

• In many cases cannot profitably reuse logic at
device cycle rate
• Cycles, no data parallelism
• Low throughput, unstructured
• Dissimilar data dependent computations

• These cases benefit from having more than
one instructions/operations per active element

• Economical retiming becomes important here
to achieve active LUT reduction

• For c=[4,8], I=[4,6] automatically mapped
designs are 1/2 to 1/3 single context size

