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Lecture #23 – Function Unit Architectures
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Quick Points

• HW #3, #4 graded and returned
• Next week Thursday, project status updates

• 10 minute presentations per group + questions
• Upload to WebCT by the previous evening
• Expected that you’ve made some progress!
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Allowable Schedules

Active LUTs (NA) = 3
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Sequentialization

• Adding time slots 
• More sequential (more latency)
• Adds slack

• Allows better balance

L=4 →NA=2 (4 or 3 contexts)
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Multicontext Scheduling

• “Retiming” for multicontext
• goal: minimize peak resource requirements

• NP-complete
• List schedule, anneal

• How do we accommodate intermediate data?
• Effects?
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Signal Retiming

• Non-pipelined 
• hold value on LUT Output (wire) 

• from production through consumption

• Wastes wire and switches by occupying
• For entire critical path delay L
• Not just for 1/L’th of cycle takes to cross wire 

segment

• How will it show up in multicontext?



2

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.7

Signal Retiming

• Multicontext equivalent
• Need LUT to hold value for each intermediate 

context
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• Logically three levels of 
dependence

• Single Context: 
21 LUTs @ 880Kλ2=18.5Mλ2

Full ASCII Hex Circuit
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• Three contexts: 
12 LUTs @ 1040Kλ2=12.5Mλ2

• Pipelining needed for 
dependent paths

Multicontext Version
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ASCII→Hex Example 
• All retiming on wires (active outputs)

• Saturation based on inputs to largest stage
• With enough contexts only one LUT needed
• Increased LUT area due to additional stored configuration 

information
• Eventually additional interconnect savings taken up by LUT 

configuration overhead

Ideal≡Perfect scheduling spread + no retime overhead
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@ depth=4, c=6: 5.5Mλ2 (compare 18.5Mλ2 )

ASCII→Hex Example (cont.)
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General Throughput Mapping

• If only want to achieve limited throughput
• Target produce new result every t cycles
• Spatially pipeline every t stages 

• cycle = t 
• Retime to minimize register requirements
• Multicontext evaluation w/in a spatial stage

• Retime (list schedule) to minimize resource 
usage 

• Map for depth (i) and contexts (c)
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• 23 MCNC circuits
• Area mapped with SIS and Chortle

Benchmark Set
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Area v. Throughput
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Area v. Throughput (cont.)
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Reconfiguration for Fault Tolerance

• Embedded systems require high reliability in 
the presence of transient or permanent faults

• FPGAs contain substantial redundancy 
• Possible to dynamically “configure around”

problem areas
• Numerous on-line and off-line solutions
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• Huang and McCluskey
• Assume that each FPGA column is 

equivalent in terms of logic and routing
• Preserve empty columns for future use
• Somewhat wasteful

• Precompile and compress differences in 
bitstreams

Column Based Reconfiguration
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• Create multiple copies of the same design with 
different unused columns

• Only requires different inter-block connections
• Can lead to unreasonable configuration count

Column Based Reconfiguration
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• Determining differences and compressing the 
results leads to “reasonable” overhead

• Scalability and fault diagnosis are issues

Column Based Reconfiguration
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Summary

• In many cases cannot profitably reuse logic at 
device cycle rate
• Cycles, no data parallelism
• Low throughput, unstructured
• Dissimilar data dependent computations

• These cases benefit from having more than 
one instructions/operations per active element

• Economical retiming becomes important here 
to achieve active LUT reduction

• For c=[4,8], I=[4,6] automatically mapped 
designs are 1/2 to 1/3 single context size
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Outline

• Continuation
• Function Unit Architectures

• Motivation
• Various architectures
• Device trends
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Coarse-grained Architectures

• DP-FPGA 
• LUT-based 
• LUTs share configuration bits

• Rapid
• Specialized ALUs, mutlipliers
• 1D pipeline

• Matrix
• 2-D array of ALUs

• Chess
• Augmented, pipelined matrix

• Raw
• Full RISC core as basic block
• Static scheduling used for communication

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.23

DP-FPGA

• Break FPGA into datapath and control sections
• Save storage for LUTs and connection transistors
• Key issue is grain size
• Cherepacha/Lewis – U. Toronto
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MC = LUT SRAM bits
CE = connection block pass transistors
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Two-dimensional Layout

• Control network 
supports 
distributed 
signals

• Data routed as 
four-bit values
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• Ideal case would be if all datapath divisible by 4, no 
“irregularities”

• Area improvement includes logic values only
• Shift logic included

DP-FPGA Technology Mapping
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Cell Cell Cell

RaPiD

• Reconfigurable Pipeline Datapath
• Ebeling –University of Washington
• Uses hard-coded functional units (ALU, Memory, 

multiply)
• Good for signal processing
• Linear array of processing elements
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• Segmented linear architecture
• All RAMs and ALUs are pipelined
• Bus connectors also contain registers

RaPiD Datapath
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RaPiD Control Path

• In addition to static control, control pipeline allows 
dynamic control

• LUTs provide simple programmability
• Cells can be chained together to form continuous pipe
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• Measure system response to input impulse
• Coefficients used to scale input
• Running sum determined total

FIR Filter Example
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FIR Filter Example (cont.)

• Chain multiple taps 
together (one 
multiplier per tap)
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MATRIX

• Dehon and Mirsky -> MIT
• 2-dimensional array of ALUs
• Each Basic Functional Unit contains 

“processor” (ALU + SRAM)
• Ideal for systolic and VLIW computation
• 8-bit computation
• Forerunner of SiliconSpice product
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Basic Functional Unit
• Two inputs from 

adjacent blocks
• Local memory for 

instructions, data
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MATRIX Interconnect

• Near-neighbor and quad connectivity
• Pipelined interconnect at ALU inputs
• Data transferred in 8-bit groups
• Interconnect not pipelined
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Functional Unit Inputs

• Each ALU inputs 
come from several 
sources

• Note that source is 
locally configurable 
based on data values
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K=8

FIR Filter Example

• For k-weight filter 4K cells needed 
• One result every 2 cycles

• K/2 8x8 multiplies per cycle
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Chess

• HP Labs – Bristol, England
• 2-D array – similar to Matrix
• Contains more “FPGA-like” routing 

resources
• No reported software or application 

results
• Doesn’t support incremental compilation
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Chess Interconnect

• More like an 
FPGA

• Takes advantage 
of near-neighbor 
connectivity
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• Switchbox memory 
can be used as 
storage

• ALU core for 
computation

Chess Basic Block
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Reconfigurable Architecture Workstation

• MIT Computer Architecture Group
• Full RISC processor located as 

processing element
• Routing decoupled into switch mode
• Parallelizing compiler used to distribute 

work load
• Large amount of memory per tile
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RAW Tile

• Full functionality in each tile
• Static router located for near-neighbor 

communication
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RAW Datapath
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Raw Compiler

• Parallelizes compilation across multiple tiles
• Orchestrates communication between tiles
• Some dynamic (data dependent) routing 

possible
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Summary

• Architectures moving in the direction of 
coarse-grained blocks

• Latest trend is functional pipeline
• Communication determined at compile 

time
• Software support still a major issue


