
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #23 – Function Unit Architectures

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.2

Quick Points

• HW #3, #4 graded and returned
• Next week Thursday, project status updates

• 10 minute presentations per group + questions
• Upload to WebCT by the previous evening
• Expected that you’ve made some progress!

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.3

Allowable Schedules

Active LUTs (NA) = 3

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.4

Sequentialization

• Adding time slots
• More sequential (more latency)
• Adds slack

• Allows better balance

L=4 →NA=2 (4 or 3 contexts)

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.5

Multicontext Scheduling

• “Retiming” for multicontext
• goal: minimize peak resource requirements

• NP-complete
• List schedule, anneal

• How do we accommodate intermediate data?
• Effects?

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.6

Signal Retiming

• Non-pipelined
• hold value on LUT Output (wire)

• from production through consumption

• Wastes wire and switches by occupying
• For entire critical path delay L
• Not just for 1/L’th of cycle takes to cross wire

segment

• How will it show up in multicontext?

2

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.7

Signal Retiming

• Multicontext equivalent
• Need LUT to hold value for each intermediate

context

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.8

• Logically three levels of
dependence

• Single Context:
21 LUTs @ 880Kλ2=18.5Mλ2

Full ASCII Hex Circuit

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.9

• Three contexts:
12 LUTs @ 1040Kλ2=12.5Mλ2

• Pipelining needed for
dependent paths

Multicontext Version

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.10

ASCII→Hex Example
• All retiming on wires (active outputs)

• Saturation based on inputs to largest stage
• With enough contexts only one LUT needed
• Increased LUT area due to additional stored configuration

information
• Eventually additional interconnect savings taken up by LUT

configuration overhead

Ideal≡Perfect scheduling spread + no retime overhead

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.11

@ depth=4, c=6: 5.5Mλ2 (compare 18.5Mλ2)

ASCII→Hex Example (cont.)

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.12

General Throughput Mapping

• If only want to achieve limited throughput
• Target produce new result every t cycles
• Spatially pipeline every t stages

• cycle = t
• Retime to minimize register requirements
• Multicontext evaluation w/in a spatial stage

• Retime (list schedule) to minimize resource
usage

• Map for depth (i) and contexts (c)

3

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.13

• 23 MCNC circuits
• Area mapped with SIS and Chortle

Benchmark Set

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.14

Area v. Throughput

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.15

Area v. Throughput (cont.)

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.16

Reconfiguration for Fault Tolerance

• Embedded systems require high reliability in
the presence of transient or permanent faults

• FPGAs contain substantial redundancy
• Possible to dynamically “configure around”

problem areas
• Numerous on-line and off-line solutions

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.17

• Huang and McCluskey
• Assume that each FPGA column is

equivalent in terms of logic and routing
• Preserve empty columns for future use
• Somewhat wasteful

• Precompile and compress differences in
bitstreams

Column Based Reconfiguration

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.18

• Create multiple copies of the same design with
different unused columns

• Only requires different inter-block connections
• Can lead to unreasonable configuration count

Column Based Reconfiguration

4

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.19

• Determining differences and compressing the
results leads to “reasonable” overhead

• Scalability and fault diagnosis are issues

Column Based Reconfiguration

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.20

Summary

• In many cases cannot profitably reuse logic at
device cycle rate
• Cycles, no data parallelism
• Low throughput, unstructured
• Dissimilar data dependent computations

• These cases benefit from having more than
one instructions/operations per active element

• Economical retiming becomes important here
to achieve active LUT reduction

• For c=[4,8], I=[4,6] automatically mapped
designs are 1/2 to 1/3 single context size

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.21

Outline

• Continuation
• Function Unit Architectures

• Motivation
• Various architectures
• Device trends

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.22

Coarse-grained Architectures

• DP-FPGA
• LUT-based
• LUTs share configuration bits

• Rapid
• Specialized ALUs, mutlipliers
• 1D pipeline

• Matrix
• 2-D array of ALUs

• Chess
• Augmented, pipelined matrix

• Raw
• Full RISC core as basic block
• Static scheduling used for communication

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.23

DP-FPGA

• Break FPGA into datapath and control sections
• Save storage for LUTs and connection transistors
• Key issue is grain size
• Cherepacha/Lewis – U. Toronto

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.24

MC = LUT SRAM bits
CE = connection block pass transistors

CE
N

MC
N

CE*NMCA(N) +=
+

=

Set MC = 2-3CE

0 1 1 1 0 0 1 0

Y0

Y1

A0

B0
C0

A1

B1
C1

Configuration Sharing

5

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.25

Two-dimensional Layout

• Control network
supports
distributed
signals

• Data routed as
four-bit values

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.26

• Ideal case would be if all datapath divisible by 4, no
“irregularities”

• Area improvement includes logic values only
• Shift logic included

DP-FPGA Technology Mapping

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.27

Cell Cell Cell

RaPiD

• Reconfigurable Pipeline Datapath
• Ebeling –University of Washington
• Uses hard-coded functional units (ALU, Memory,

multiply)
• Good for signal processing
• Linear array of processing elements

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.28

• Segmented linear architecture
• All RAMs and ALUs are pipelined
• Bus connectors also contain registers

RaPiD Datapath

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.29

RaPiD Control Path

• In addition to static control, control pipeline allows
dynamic control

• LUTs provide simple programmability
• Cells can be chained together to form continuous pipe

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.30

• Measure system response to input impulse
• Coefficients used to scale input
• Running sum determined total

FIR Filter Example

6

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.31

FIR Filter Example (cont.)

• Chain multiple taps
together (one
multiplier per tap)

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.32

MATRIX

• Dehon and Mirsky -> MIT
• 2-dimensional array of ALUs
• Each Basic Functional Unit contains

“processor” (ALU + SRAM)
• Ideal for systolic and VLIW computation
• 8-bit computation
• Forerunner of SiliconSpice product

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.33

Basic Functional Unit
• Two inputs from

adjacent blocks
• Local memory for

instructions, data

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.34

MATRIX Interconnect

• Near-neighbor and quad connectivity
• Pipelined interconnect at ALU inputs
• Data transferred in 8-bit groups
• Interconnect not pipelined

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.35

Functional Unit Inputs

• Each ALU inputs
come from several
sources

• Note that source is
locally configurable
based on data values

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.36

K=8

FIR Filter Example

• For k-weight filter 4K cells needed
• One result every 2 cycles

• K/2 8x8 multiplies per cycle

7

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.37

Chess

• HP Labs – Bristol, England
• 2-D array – similar to Matrix
• Contains more “FPGA-like” routing

resources
• No reported software or application

results
• Doesn’t support incremental compilation

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.38

Chess Interconnect

• More like an
FPGA

• Takes advantage
of near-neighbor
connectivity

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.39

• Switchbox memory
can be used as
storage

• ALU core for
computation

Chess Basic Block

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.40

Reconfigurable Architecture Workstation

• MIT Computer Architecture Group
• Full RISC processor located as

processing element
• Routing decoupled into switch mode
• Parallelizing compiler used to distribute

work load
• Large amount of memory per tile

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.41

RAW Tile

• Full functionality in each tile
• Static router located for near-neighbor

communication

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.42

RAW Datapath

8

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.43

Raw Compiler

• Parallelizes compilation across multiple tiles
• Orchestrates communication between tiles
• Some dynamic (data dependent) routing

possible

CprE 583 – Reconfigurable ComputingNovember 9, 2006 Lect-23.44

Summary

• Architectures moving in the direction of
coarse-grained blocks

• Latest trend is functional pipeline
• Communication determined at compile

time
• Software support still a major issue

