
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #24 – Reconfigurable Coprocessors

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.2

• Unresolved course issues
• Gigantic red bug
• Ghost inside Microsoft PowerPoint

• This Thursday, project status updates
• 10 minute presentations per group + questions
• Combination of Adobe Breeze and calling in to

teleconference
• More details later today

Quick Points

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.3

Recap – DP-FPGA

• Break FPGA into datapath and control sections
• Save storage for LUTs and connection transistors
• Key issue is grain size
• Cherepacha/Lewis – U. Toronto

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.4

• Segmented linear architecture
• All RAMs and ALUs are pipelined
• Bus connectors also contain registers

Recap – RaPiD

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.5

Recap – Matrix
• Two inputs from

adjacent blocks
• Local memory for

instructions, data

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.6

Recap – RAW Tile

• Full functionality in each tile
• Static router located for near-neighbor

communication

2

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.7

Outline

• Recap
• Reconfigurable Coprocessors

• Motivation
• Compute Models
• Architecture
• Examples

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.8

• Processors efficient at sequential codes,
regular arithmetic operations

• FPGA efficient at fine-grained parallelism,
unusual bit-level operations

• Tight-coupling important: allows sharing of
data/control

• Efficiency is an issue:
• Context-switches
• Memory coherency
• Synchronization

Overview

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.9

• I/O pre/post processing
• Application specific operation
• Reconfigurable Co-processors

• Coarse-grained
• Mostly independent

• Reconfigurable Functional Unit
• Tightly integrated with processor pipeline
• Register file sharing becomes an issue

Compute Models

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.10

a31 a30………. a0

b31 b0

Swap bit
positions

Instruction Augmentation

• Processor can only describe a small number
of basic computations in a cycle
• I bits -> 2I operations

• Many operations could be performed on 2
W-bit words

• ALU implementations restrict execution of
some simple operations
• e. g. bit reversal

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.11

Instruction Augmentation (cont.)

• Provide a way to augment the processor
instruction set for an application

• Avoid mismatch between hardware/software
• Fit augmented instructions into data and

control stream
• Create a functional unit for augmented

instructions
• Compiler techniques to identify/use new

functional unit

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.12

“First” Instruction Augmentation

• PRISM
• Processor Reconfiguration through Instruction

Set Metamorphosis
• PRISM-I

• 68010 (10MHz) + XC3090
• can reconfigure FPGA in one second!
• 50-75 clocks for operations

3

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.13

PRISM-1 Results

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.14

PRISM Architecture

• FPGA on bus
• Access as memory mapped peripheral
• Explicit context management
• Some software discipline for use
• …not much of an “architecture” presented to

user

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.15

PRISC

• Architecture:
• couple into register file as “superscalar”

functional unit
• flow-through array (no state)

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.16

PRISC (cont.)

• All compiled
• Working from MIPS

binary
• <200 4LUTs ?

• 64x3
• 200MHz MIPS base
• See [RazSmi94A] for

more details

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.17

Chimaera

• Start from Prisc idea.
• Integrate as a functional unit
• No state
• RFU Ops (like expfu)
• Stall processor on instruction miss

• Add
• Multiple instructions at a time
• More than 2 inputs possible

• [HauFry97A]

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.18

Chimaera Architecture

• Live copy of register file values feed into array
• Each row of array may compute from register

of intermediates
• Tag on array to indicate RFUOP

4

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.19

Chimaera Architecture (cont.)

• Array can operate on values as soon as placed in
register file

• When RFUOP matches
• Stall until result ready
• Drive result from matching row

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.20

Chimaera Timing

• If R1 presented late then stall
• Might be helped by instruction reordering
• Physical implementation an issue
• Relies on considerable processor

interaction for support

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.21

Chimaera Speedup

• Three Spec92 benchmarks
• Compress 1.11 speedup
• Eqntott 1.8
• Life 2.06

• Small arrays with limited state
• Small speedup
• Perhaps focus on global router rather

than local optimization

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.22

Garp

• Integrate as coprocessor
• Similar bandwidth to

processor as functional
unit

• Own access to memory
• Support multi-cycle

operation
• Allow state
• Cycle counter to track

operation
• Configuration cache,

path to memory

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.23

Garp (cont.)

• ISA – coprocessor operations
• Issue gaconfig to make particular configuration

present
• Explicitly move data to/from array
• Processor suspension during coproc operation
• Use cycle counter to track progress

• Array may directly access memory
• Processor and array share memory
• Exploits streaming data operations
• Cache/MMU maintains data consistency

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.24

Garp Instructions

• Interlock indicates if processor waits for array
to count to zero

• Last three instructions useful for context swap
• Processor decode hardware augmented to

recognize new instructions

5

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.25

Garp Array

• Row-oriented logic
• Dedicated path for processor/memory
• Processor does not have to be involved in array-memory

path
CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.26

Garp Results

• General
results
• 10-20X

improvement
on stream,
feed-forward
operation

• 2-3x when
data
dependencies
limit pipelining

• [HauWaw97A]

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.27

PRISC/Chimaera vs. Garp

• Prisc/Chimaera
• Basic op is single cycle: expfu
• No state
• Could have multiple PFUs
• Fine grained parallelism
• Not effective for deep pipelines

• Garp
• Basic op is multi-cycle – gaconfig
• Effective for deep pipelining
• Single array
• Requires state swapping consideration

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.28

VLIW/microcoded Model

• Similar to instruction augmentation
• Single tag (address, instruction)

• Controls a number of more basic operations
• Some difference in expectation

• Can sequence a number of different
tags/operations together

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.29

REMARC

• Array of “nano-
processors”
• 16b, 32 instructions

each
• VLIW like execution,

global sequencer
• Coprocessor interface

(similar to GARP)
• No direct

array⇔memory

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.30

REMARC Architecture

• Issue coprocessor
rex
• Global controller

sequences
nanoprocessors

• Multiple cycles
(microcode)

• Each nanoprocessor
has own I-store
(VLIW)

6

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.31

Common Theme

• To overcome instruction expression limits:
• Define new array instructions. Make decode

hardware slower / more complicated
• Many bits of configuration… swap time. An

issue -> recall tips for dynamic reconfiguration
• Give array configuration short “name” which

processor can call out
• Store multiple configurations in array
• Access as needed (DPGA)

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.32

Observation

• All coprocessors have been single-threaded
• Performance improvement limited by application

parallelism
• Potential for task/thread parallelism

• DPGA
• Fast context switch

• Concurrent threads seen in discussion of
IO/stream processor

• Added complexity needs to be addressed in
software

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.33

Parallel Computation

• What would it take to let the processor and
FPGA run in parallel?

Modern Processors

Deal with:
• Variable data delays
• Dependencies with data
• Multiple heterogeneous functional units
Via:
• Register scoreboarding
• Runtime data flow (Tomasulo)

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.34

OneChip

• Want array to have direct memory→memory
operations

• Want to fit into programming model/ISA
• Without forcing exclusive processor/FPGA

operation
• Allowing decoupled processor/array execution

• Key Idea:
• FPGA operates on memory→memory regions
• Make regions explicit to processor issue
• Scoreboard memory blocks

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.35

OneChip Pipeline

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.36

• Basic Operation is:
• FPGA MEM[Rsource]→MEM[Rdst]

• block sizes powers of 2

• Supports 14 “loaded” functions
• DPGA/contexts so 4 can be cached

• Fits well into soft-core processor model

OneChip Instructions

7

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.37

OneChip (cont.)

• Basic op is: FPGA MEM→MEM
• No state between these ops
• Coherence is that ops appear sequential
• Could have multiple/parallel FPGA Compute

units
• Scoreboard with processor and each other

• Single source operations?
• Can’t chain FPGA operations?

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.38

0x0
0x1000

0x10000
FPGA
Proc

Indicates usage of data pages like
virtual memory system!

OneChip Extensions

• FPGA operates on certain memory
regions only

• Makes regions explicit to processor issue
• Scoreboard memory blocks

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.39

• Interfacing
• IO Processor (Asynchronous)
• Instruction Augmentation

• PFU (like FU, no state)
• Synchronous Coprocessor
• VLIW
• Configurable Vector

• Asynchronous Coroutine/coprocessor
• Memory⇒memory coprocessor

Compute Model Roundup

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.40

Shadow Registers

• Reconfigurable functional units require
tight integration with register file

• Many reconfigurable operations require
more than two operands at a time

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.41

Multi-Operand Operations

• What’s the best speedup that could be
achieved?
• Provides upper bound

• Assumes all operands available when needed

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.42

Additional Register File Access

• Dedicated link – move
data as needed
• Requires latency

• Extra register port –
consumes resources
• May not be used often

• Replicate whole (or
most) of register file
• Can be wasteful

8

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.43

Shadow Register Approach

• Small number of registers needed (3 or 4)
• Use extra bits in each instruction
• Can be scaled for necessary port size

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.44

Shadow Register Approach (cont.)

• Approach
comes
within 89%
of ideal for
3-input
functions

• Paper also
shows
supporting
algorithms
[Con99A]

CprE 583 – Reconfigurable ComputingNovember 14, 2006 Lect-24.45

Summary

• Many different models for co-processor
implementation
• Functional unit
• Stand-alone co-processor

• Programming models for these systems is a
key

• Recent compiler advancements open the
door for future development

• Need tie in with applications

