o~ | CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
lowa State University

Lecture #25 — High-Level Compilation

®-| Quick Points

Sunday Monday Tuesday Thursday Friday Saturday
26 26 28 29 30 1 2
Lect-25 Lect-267?
3 4 5 6 7 8 9
Project Project
Dead Seminars Seminars
Week (EDE)! (Others)
10 1" 12 13 14 15 16
Project
Finals Write-ups
Week Deadline
17 18 19
Electronic
crades | December / November 2006
Due
November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.2

°-| Project Deliverables

- Final presentation [15-25 min]
Aim for 80-100% project completeness
Outline it as an extension of your report:
Motivation and related work
Analysis and approach taken
Experimental results and summary of findings
Conclusions / next steps

Consider details that will be interesting / relevant for the
expected audience

« Final report [8-12 pages]
More thorough analysis of related work
Minimal focus on project goals and organization
Implementation details and results
See proceedings of FCCM/FPGA/FPL for inspiration

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-253

*“| Recap — Reconfigurable Coprocessing

« Processors efficient at sequential codes,
regular arithmetic operations
« FPGA efficient at fine-grained parallelism,
unusual bit-level operations
« Tight-coupling important: allows sharing of
data/control
- Efficiency is an issue:
Context-switches
Memory coherency
Synchronization

Novermber 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.4

e“| Instruction Augmentation

+ Processor can only describe a small number
of basic computations in a cycle
| bits -> 2! operations
« Many operations could be performed on 2
W-bit words
« ALU implementations restrict execution of
some simple operations
e. g. bit reversal

Ag1 Agp-neveeeees a
Swap bit
positions
bs, b,
November 28, 2006 CprE 583 - Reconfigurable Computing Lect255

°-°| Recap — PRISC [RazSmi94A]

« Architecture:

couple into register file as “superscalar”
functional unit

flow-through array (no state)

iipusts rovm e s

Tnput Operand Buses

v VVV VY

Multiport }
Register
File

Output Bus
Figure 1; PRISC Datapath

[p—-

November 28, 2006 CprE 583 ~ Reconfigurable Computing Lect-25.6

*“"| Recap — Chimaera Architecture

Result Bus

g P
E H Cachingf
g Decode H H Prefeich
Z || cam & H H Control
é Oueput E (Partial
Collapsing H | H Runtime
Muxes H Reconfigurable Array H Reconfig.)

Memory Bus

- Live copy of register file values feed into array

- Each row of array may compute from register
of intermediates

- Tag on array to indicate RFUOP

November 28, 2006 CprEE 583 — Reconfigurable Computing Lect-257

*“| PipeRench Architecture

- Many application are primarily linear
Audio processing
Modified video processing
Filtering
- Consider a “striped” architecture which can be very
heavily pipelined
Each stripe contains LUTs and flip flops
Datapath is bit-sliced
Similar to Garp/Chimaera but standalone
- Compiler initially converts dataflow application into a
series of stripes
» Run-time dynamic reconfiguration of stripes if
application is too big to fit in available hardware

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.8

° | PipeRench Internals

« Only multi-bit functional units used

- Very limited resources for interconnect to neighboring
programming elements

« Place and route greatly simplified

Local Routing
Il L =TTt = |

ww ||| ¥ || ¥¥
~shn (0 L e
e - e

Local Routing

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-259

° | PipeRench Place-and-Route

- Since no loops and linear data flow used, first step is to
perform topological sort

= Attempt to minimize critical paths by limiting NO-OP

steps
- If too many trips needed, temporally as well as spatially
pipeline
F1 F1
F3 F3
F4 F4
F5 F5
November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.10

*-“| PipeRench Prototypes

« 3.6M transistors

« Implemented in a
commercial 0.18y, 6
metal layer technology
* 125 MHz core speed
(limited by control logic)
¢ 66 MHz 1/0O Speed

* 1.5V core, 3.3V I/O

STANDARD CELLS:
Virtualization & Interface Logic
__Configuration Cache

22

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.11

e-| Parallel Computation

- What would it take to let the processor and
FPGA run in parallel?

Modern Processors

Deal with:

- Variable data delays

- Dependencies with data

- Multiple heterogeneous functional units
Via:

- Register scoreboarding

» Runtime data flow (Tomasulo)

November 28, 2006 CprE 583 ~ Reconfigurable Computing Lect-25.12

lovember 28, 2006

OneChip

Want array to have direct memory—memory
operations
Want to fit into programming model/ISA

Without forcing exclusive processor/FPGA
operation

Allowing decoupled processor/array execution
Key ldea:

FPGA operates on memory—memory regions

Make regions explicit to processor issue

Scoreboard memory blocks

CprEE 583 — Reconfigurable Computing Lect-25.13

| OneChip Pipeline

TROCTSEIR

.:ﬁ)
e

y
==
[

-

November 28, 2006 Lect-25.14

CprE 583 — Reconfigurable Computing

Nov

ember 28, 2006

OneChip Instructions

Basic Operation is:
FPGA MEM[Rsource]l->MEM[Rdst]
block sizes powers of 2

32

d
destination
block size

FPGA

] R, source.
function dest

I
| opeode block size

misc,’ Raouce

6 4 2 5 5 5 5

Supports 14 “loaded” functions
DPGA/contexts so 4 can be cached

Fits well into soft-core processor model

CprE 583 — Reconfigurable Computing Lect-25.15

OneChip (cont.)

- Basic op is: FPGA MEM—MEM
- No state between these ops
- Coherence is that ops appear sequential
+ Could have multiple/parallel FPGA compute
units
Scoreboard with processor and each other
- Single source operations?
- Can’t chain FPGA operations?

Novermber 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.16

jovember 28, 2006

OneChip Extensions

FPGA operates on certain memory
regions only

Makes regions explicit to processor issue
Scoreboard memory blocks

0x0
EPGA 0x1000
Proc 0x10000

Indicates usage of data pages like
virtual memory system!

CprE 583 - Rect

le Computing Lect-25.17

Shadow Registers

- Reconfigurable functional units require
tight integration with register file

- Many reconfigurable operations require
more than two operands at a time

i Processor Core

Caore
register p—

file

I
1

CprE 583 - Reconfigurable Col

Custom

Lect-25.18

November 28, 2006

lovember 28, 2006

Multi-Operand Operations

What's the best speedup that could be
achieved?

Provides upper bound

Assumes all operands available when needed
|

M ’3_| | |

0 g |

CprEE 583 — Reconfigurable Computing Lect-25.19

e-°| Additional Register File Access

- Dedicated link — move
data as needed

Requires latency

- Extra register port —
consumes resources

May not be used often R
Replicate whole (or § L
most) of register file

Can be wasteful

e
1t Processor Core

logic =

‘.

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.20

No

Shadow Register Approach

Small number of registers needed (3 or 4)
Use extra bits in each instruction
Can be scaled for necessary port size

i Processor core

Core

register

file
.I.

Shadon
registen.

CprE 583 — Reconfigurable Computing Lect-25.21

Execution
unit

vember 28, 2006

*=“| Shadow Register Approach (cont.)

. + Approach
comes

2 within 89%
of ideal for
3-input
gy -1 functions

=

= |+ Paper also
shows
1 = ™= supporting
B algorithms
sl 1§ [Con99A]
November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.22

No

Summary

Many different models for co-processor
implementation

Functional unit

Stand-alone co-processor
Programming models for these systems is a
key
Recent compiler advancements open the
door for future development

Need tie in with applications

vember 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.23

° Outline

* Recap
- High-Level FPGA Compilation
Issues
Handel-C
DeepC
Bit-width Analysis

November 28, 2006 CprE 583 ~ Reconfigurable Computing Lect-25.24

. Overview

+ High-level language to FPGA an
important research area

- Many challenges

- Commercial and academic projects
Celoxica
DeepC
Stream-C

- Efficiency still an issue

- Most designers prefer to get better
performance and reduced cost
Includes incremental compile and
hardware/software codesign

November 28, 2006 CprEE 583 — Reconfigurable Computing Lect-25.25

Issues

- Languages
Standard FPGA tools operate on Verilog/VHDL
Programmers want to write in C

- Compilation Time
Traditional FPGA synthesis often takes hours/days

Need compilation time closer to compiling for
conventional computers

- Programmable-Reconfigurable Processors

Compiler needs to divide computation between
programmable and reconfigurable resources

« Non-uniform target architecture

Much more variance between reconfigurable
architectures than current programmable ones

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.26

*““1 Why Compiling C is Hard

 General language
- Not designed for describing hardware
 Features that make analysis hard
Pointers
Subroutines
Linear code
« C has no direct concept of time

 C (and most procedural languages) are
inherently sequential
Most people think sequentially
Opportunities primarily lie in parallel data

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.27

Notable Platforms

« Celoxica — Handel-C
Commercial product targeted at FPGA community
Requires designer to isolate parallelism
Straightforward vision of scheduling

- DeepC
Completely automated — no special actions by designer
Ideal for data parallel operation
Fits well with scalable FPGA model

- Stream-C
Computation model assumes communicating processes
Stream based communication
Designer isolates streams for high bandwidth

Novermber 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.28

° Celoxica Handel-C

« Handel-C adds constructs to ANSI-C to enable
hardware implementation
Synthesizable HW programming language based on C

Implements C algorithm direct to optimized FPGA or
RTL

Handel-C

constructs supported by DK Parallelism
Control statements Timing
(if, switch, case, etc.) Interfaces
Integer Arithmetic Clocks
Software-o| Functions Macro pre-processor
ANSI-C constilil§ts EEliETs B e
Recursion Basic types Shared expression
Side effects (Structures, Arrays etc.) Communications
Standard libraries #define Handel-C libraries
Malloc #include FP library
Bit manipulation

November 28, 2006

Majority of ANSI-C

CprE 583 - Reconfigurable Computing

Additions for hardware

Lect-25.29

Fundamentals

- Language extensions for hardware
implementation as part of a system level
design methodology

Software libraries needed for verification

- Extensions enable optimization of timing and

November 28, 2006

area performance

Systems described in ANSI-C can be
implemented in software and hardware using
language extensions defined in Handel-C to
describe hardware

Extensions focused towards areas of
parallelism and communication

CprE 583 ~ Reconfigurable Computing Lect-25.30

Variables

- Handel-C has one basic type - integer

- May be signed or unsigned

- Can be any width, not limited to 8, 16, 32 etc.
Variables are mapped to hardware registers

void main(void)

¢“| Timing Model

« Assignments and delay statements take 1 clock cycle
- Combinatorial Expressions computed between clock
edges
Most complex expression determines clock period
Example: takes 1+n cycles (n is number of iterations)

index = 0; // 1 Cycle
while (index < length){
if(table[index] = key)
found = index; // 1 Cycle
else
index = index+1; // 1 Cycle
3

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.32

{
unsigned 6 a;
a=45;
}
a=[1]o[1][1]0]1]=0x2d
! 1
MSB LsB
November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.31
e-| Parallelism

- Handel-C blocks are by default sequential

- par{.} executes statements in parallel

« Par block completes when all statements complete
Time for block is time for longest statement
Can nest sequential blocks in par blocks

- Parallel version takes 1 clock cycle
Allows trade-off between hardware size and performance

Parallel Block
// 1 Clock Cycle

Parallel code

par{ par(i=0;i<10;i++)
a=1; {
b=2; array[i]=0;
c=3;

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.33

e-°| Channels

« Allow communication and synchronization between two parallel
branches
Semantics based on CSP (used by NASA and US Naval Research
Laboratory)
Unbuffered (synchronous) send and receive
- Declaration
Specifies data type to be communicated

(o3

Chan unsigned 6 c;

{ {

cla+l; //write atl to c c?b; //read c to b

o }

Novermber 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.34

Signals

-+ A signal behaves like a wire - takes the value assigned to it
but only for that clock cycle
The value can be read back during the same clock cycle
The signal can also be given a default value

// Breaking up complex expressions
int 15 a, b;

signal <int> sigl;

static signal <int> sig2=0;

a=17;

par

{
sigl = (a+34)*17;
sig2 = (a<<2)+2;

b = sigl + sig2;

¥

November 28, 2006 CprEE 583 — Reconfigurable Computing Lect-25.35

e-°| Sharing Hardware for Expressions

= Functions provide a means of sharing hardware for
expressions

- By default, compiler generates separate hardware for
each expression
Hardware is idle when control flow is elsewhere in the
program
Hardware function body is shared among call sites

int mult_add(int z,cl,c2){
{ return z*cl + c2; }
X= X*a + b; {
y= y*c + d;
h x= mult_add(x,a,b);
y= mult_add(y,c,d);
3

November 28, 2006 CprE 583 ~ Reconfigurable Computing Lect-25.36

- Consider loop based

DeepC Compiler

Cor Fortran Program

A Traditional Compiler Optimzations
computation to be memory
limited

- Computation partitioned Srolllemony Ptone
across small memories to

form tiles Virtual Wires Scheduling
Inter-tile communication is

scheduled

« RTL synthesis performed on

resulting computation and [A G]
communication hardware

Custom Logic Generation

|

DeepC Compiler (cont.)

- Parallelizes compilation across multiple

tiles

« Orchestrates communication between

tiles

- Some dynamic (data dependent) routing

possible
JU mm ;WW

o (el he) 001 i)
ARATE]

|ur-n |(. :o amd] |

1\ 1 »\ I-n.
A i

Forlimd b1 00 o

J—’iﬁ%i

November 28, 2006 CprE 583 — Reconfigurable Computing T oo

Hardware
November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.37
e~ Control FSM
- Result for each tile is a
Conrod 150

datapath, state machine,
and memory block

Tshabus

Lege

Faasa

] o

Nov

Bit-width Analysis

Higher Language Abstraction
Reconfigurable fabrics benefit from
specialization
One opportunity is bitwidth optimization

During C to FPGA conversion consider
operand widths
Requires checking data dependencies
Must take worst case into account
Opportunity for significant gains for Booleans
and loop indices
Focus here is on specialization

ember 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.40

e=°| Arithmetic Analysis
- Example

int a;

unsigned b;

a = random(Q);

b = randomQ); a: 32 bits b: 32 bits
a=a/2; a: 31 bits b: 32 bits
b =b > 4; a: 31 bits b: 28 bits
a = random() & Oxff; [EEIIEHHLANS

November 28, 2006 CprE 583 - Rec

Lect-25.41

Loop Induction Variable Bounding

- Applicable to for loop induction variables.
- Example

int i;
for (i =0; i <6; i++) {
}

November 28, 2006 CprE 583 ~ Reconfigurable Computing Lect-25.42

Novemt

Clamping Optimization

- Multimedia codes often simulate saturating
instructions
- Example
int valpred valpred: 32 bits
if (valpred > 32767)
valpred = 32767
else if (valpred < -32768)

valpred = -32768 valpred: 16 bits

ber 28, 2006 CprEE 583 — Reconfigurable Computing Lect-25.43

¢ Solving the Linear Sequence

a
fo =1 to 10
a=-a+1 <1,460>
for j =1 to 10
a=-a+?2
for k = 1 to 10
a=-a+3
...=a+4

<0,0>

= 1
- O

<3,480>

<24,510>
<510,510>

- Sum all the contributions together, and take the
data-range union with the initial value

- Can easily find conservative range of <0,510>

November 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.44

2000
— 1800
=

oun
22
s 8
g 8

1200

Area (CLB cou

[SEEN
S 9
ISERS)

0

November 28, 2006

FPGA Area Savings

O Without bitwise @ With bitwise

|

CprE 583 — Reconfigurable Computing Lect-25.45

32

Lmﬂ;k

Ll

life (1

adpcm (8)
bubblesort (32)
convolve (16)
histogram (16}
intfir
intmatmul (16)
jacobi (8)
median (32)
mpegcorr (16)
newlife
parity (32
pmatch (32
sor (32)

°“°| Summary

- High-level is still not well understood for
reconfigurable computing

- Difficult issue is parallel specification and
verification

- Designers efficiency in RTL specification is

quite high. Do we really need better high-level
compilation?

Novermber 28, 2006 CprE 583 — Reconfigurable Computing Lect-25.46

