
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #25 – High-Level Compilation

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.2

Quick Points

26
Sunday

Dead
Week

3

Finals
Week

10

17

26
Monday

4

11

18

Lect-25

28
Tuesday

Project
Seminars

(EDE)1

5

12

Electronic
Grades

Due

19

29
Wednesday

6

13

Lect-26??

30
Thursday

Project
Seminars
(Others)

7

14

1
Friday

8

15

2
Saturday

9

Project
Write-ups
Deadline

16

December / November 2006

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.3

Project Deliverables

• Final presentation [15-25 min]
• Aim for 80-100% project completeness
• Outline it as an extension of your report:

• Motivation and related work
• Analysis and approach taken
• Experimental results and summary of findings
• Conclusions / next steps

• Consider details that will be interesting / relevant for the
expected audience

• Final report [8-12 pages]
• More thorough analysis of related work
• Minimal focus on project goals and organization
• Implementation details and results
• See proceedings of FCCM/FPGA/FPL for inspiration

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.4

• Processors efficient at sequential codes,
regular arithmetic operations

• FPGA efficient at fine-grained parallelism,
unusual bit-level operations

• Tight-coupling important: allows sharing of
data/control

• Efficiency is an issue:
• Context-switches
• Memory coherency
• Synchronization

Recap – Reconfigurable Coprocessing

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.5

a31 a30………. a0

b31 b0

Swap bit
positions

Instruction Augmentation

• Processor can only describe a small number
of basic computations in a cycle
• I bits -> 2I operations

• Many operations could be performed on 2
W-bit words

• ALU implementations restrict execution of
some simple operations
• e. g. bit reversal

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.6

Recap – PRISC [RazSmi94A]

• Architecture:
• couple into register file as “superscalar”

functional unit
• flow-through array (no state)

2

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.7

Recap – Chimaera Architecture

• Live copy of register file values feed into array
• Each row of array may compute from register

of intermediates
• Tag on array to indicate RFUOP

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.8

PipeRench Architecture

• Many application are primarily linear
• Audio processing
• Modified video processing
• Filtering

• Consider a “striped” architecture which can be very
heavily pipelined
• Each stripe contains LUTs and flip flops
• Datapath is bit-sliced
• Similar to Garp/Chimaera but standalone

• Compiler initially converts dataflow application into a
series of stripes

• Run-time dynamic reconfiguration of stripes if
application is too big to fit in available hardware

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.9

PipeRench Internals
• Only multi-bit functional units used
• Very limited resources for interconnect to neighboring

programming elements
• Place and route greatly simplified

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.10

F1
F2
F3
F4
F5

F1
F6
F3
F4
F5

D1

D2

D3
D4

PipeRench Place-and-Route

• Since no loops and linear data flow used, first step is to
perform topological sort

• Attempt to minimize critical paths by limiting NO-OP
steps

• If too many trips needed, temporally as well as spatially
pipeline

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.11

CUSTOM:
PipeRench Fabric

STANDARD CELLS:
Virtualization & Interface Logic

Configuration Cache
Data Store Memory

STRIPE

PE

• 3.6M transistors
• Implemented in a
commercial 0.18μ, 6
metal layer technology
• 125 MHz core speed
(limited by control logic)
• 66 MHz I/O Speed
• 1.5V core, 3.3V I/O

PipeRench Prototypes

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.12

Parallel Computation

• What would it take to let the processor and
FPGA run in parallel?

Modern Processors

Deal with:
• Variable data delays
• Dependencies with data
• Multiple heterogeneous functional units
Via:
• Register scoreboarding
• Runtime data flow (Tomasulo)

3

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.13

OneChip

• Want array to have direct memory→memory
operations

• Want to fit into programming model/ISA
• Without forcing exclusive processor/FPGA

operation
• Allowing decoupled processor/array execution

• Key Idea:
• FPGA operates on memory→memory regions
• Make regions explicit to processor issue
• Scoreboard memory blocks

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.14

OneChip Pipeline

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.15

• Basic Operation is:
• FPGA MEM[Rsource]→MEM[Rdst]

• block sizes powers of 2

• Supports 14 “loaded” functions
• DPGA/contexts so 4 can be cached

• Fits well into soft-core processor model

OneChip Instructions

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.16

OneChip (cont.)

• Basic op is: FPGA MEM→MEM
• No state between these ops
• Coherence is that ops appear sequential
• Could have multiple/parallel FPGA compute

units
• Scoreboard with processor and each other

• Single source operations?
• Can’t chain FPGA operations?

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.17

0x0
0x1000

0x10000
FPGA
Proc

Indicates usage of data pages like
virtual memory system!

OneChip Extensions

• FPGA operates on certain memory
regions only

• Makes regions explicit to processor issue
• Scoreboard memory blocks

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.18

Shadow Registers

• Reconfigurable functional units require
tight integration with register file

• Many reconfigurable operations require
more than two operands at a time

4

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.19

Multi-Operand Operations

• What’s the best speedup that could be
achieved?
• Provides upper bound

• Assumes all operands available when needed

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.20

Additional Register File Access

• Dedicated link – move
data as needed
• Requires latency

• Extra register port –
consumes resources
• May not be used often

• Replicate whole (or
most) of register file
• Can be wasteful

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.21

Shadow Register Approach

• Small number of registers needed (3 or 4)
• Use extra bits in each instruction
• Can be scaled for necessary port size

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.22

Shadow Register Approach (cont.)

• Approach
comes
within 89%
of ideal for
3-input
functions

• Paper also
shows
supporting
algorithms
[Con99A]

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.23

Summary

• Many different models for co-processor
implementation
• Functional unit
• Stand-alone co-processor

• Programming models for these systems is a
key

• Recent compiler advancements open the
door for future development

• Need tie in with applications

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.24

Outline

• Recap
• High-Level FPGA Compilation

• Issues
• Handel-C
• DeepC
• Bit-width Analysis

5

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.25

Overview

• High-level language to FPGA an
important research area

• Many challenges
• Commercial and academic projects

• Celoxica
• DeepC
• Stream-C

• Efficiency still an issue
• Most designers prefer to get better

performance and reduced cost
• Includes incremental compile and

hardware/software codesign
CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.26

Issues

• Languages
• Standard FPGA tools operate on Verilog/VHDL
• Programmers want to write in C

• Compilation Time
• Traditional FPGA synthesis often takes hours/days
• Need compilation time closer to compiling for

conventional computers
• Programmable-Reconfigurable Processors

• Compiler needs to divide computation between
programmable and reconfigurable resources

• Non-uniform target architecture
• Much more variance between reconfigurable

architectures than current programmable ones

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.27

Why Compiling C is Hard

• General language
• Not designed for describing hardware
• Features that make analysis hard

• Pointers
• Subroutines
• Linear code

• C has no direct concept of time
• C (and most procedural languages) are

inherently sequential
• Most people think sequentially
• Opportunities primarily lie in parallel data

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.28

Notable Platforms

• Celoxica – Handel-C
• Commercial product targeted at FPGA community
• Requires designer to isolate parallelism
• Straightforward vision of scheduling

• DeepC
• Completely automated – no special actions by designer
• Ideal for data parallel operation
• Fits well with scalable FPGA model

• Stream-C
• Computation model assumes communicating processes
• Stream based communication
• Designer isolates streams for high bandwidth

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.29

Control statements
(if, switch, case, etc.)

Integer Arithmetic
Functions
Pointers

Basic types
(Structures, Arrays etc.)

#define
#include

Parallelism
Timing

Interfaces
Clocks

Macro pre-processor
RAM/ROM

Shared expression
Communications

Handel-C libraries
FP library

Bit manipulation

Recursion
Side effects

Standard libraries
Malloc

Software-only
ANSI-C constructs

Majority of ANSI-C
constructs supported by DK

Handel-C
Additions for hardware

Celoxica Handel-C

• Handel-C adds constructs to ANSI-C to enable
hardware implementation
• Synthesizable HW programming language based on C
• Implements C algorithm direct to optimized FPGA or

RTL

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.30

Fundamentals

• Language extensions for hardware
implementation as part of a system level
design methodology
• Software libraries needed for verification

• Extensions enable optimization of timing and
area performance

• Systems described in ANSI-C can be
implemented in software and hardware using
language extensions defined in Handel-C to
describe hardware

• Extensions focused towards areas of
parallelism and communication

6

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.31

• Handel-C has one basic type - integer
• May be signed or unsigned
• Can be any width, not limited to 8, 16, 32 etc.

Variables are mapped to hardware registers

void main(void)
{

unsigned 6 a;
a=45;

}

1 0 1 1 0 1 = 0x2da =

LSBMSB

Variables

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.32

index = 0; // 1 Cycle
while (index < length){

if(table[index] = key)
found = index; // 1 Cycle

else
index = index+1; // 1 Cycle

}
}

• Assignments and delay statements take 1 clock cycle
• Combinatorial Expressions computed between clock

edges
• Most complex expression determines clock period
• Example: takes 1+n cycles (n is number of iterations)

Timing Model

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.33

Parallel Block

// 1 Clock Cycle
par{

a=1;
b=2;
c=3;

}

Parallel code
par(i=0;i<10;i++)
{

array[i]=0;
}

Parallelism

• Handel-C blocks are by default sequential
• par{…} executes statements in parallel
• Par block completes when all statements complete

• Time for block is time for longest statement
• Can nest sequential blocks in par blocks

• Parallel version takes 1 clock cycle
• Allows trade-off between hardware size and performance

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.34

{
…
c?b; //read c to b
…

}

{
…
c!a+1; //write a+1 to c
…

}

Chan unsigned 6 c;

c
a b

Channels
• Allow communication and synchronization between two parallel

branches
• Semantics based on CSP (used by NASA and US Naval Research

Laboratory)
• Unbuffered (synchronous) send and receive

• Declaration
• Specifies data type to be communicated

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.35

• A signal behaves like a wire - takes the value assigned to it
but only for that clock cycle
• The value can be read back during the same clock cycle
• The signal can also be given a default value

// Breaking up complex expressions
int 15 a, b;
signal <int> sig1;
static signal <int> sig2=0;
a = 7;
par
{

sig1 = (a+34)*17;
sig2 = (a<<2)+2;
b = sig1 + sig2;

}

Signals

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.36

• Functions provide a means of sharing hardware for
expressions

• By default, compiler generates separate hardware for
each expression
• Hardware is idle when control flow is elsewhere in the

program
• Hardware function body is shared among call sites

{…
x= x*a + b;
y= y*c + d;

}

int mult_add(int z,c1,c2){
return z*c1 + c2; }

{
…
x= mult_add(x,a,b);
y= mult_add(y,c,d);

}

Sharing Hardware for Expressions

7

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.37

DeepC Compiler

• Consider loop based
computation to be memory
limited

• Computation partitioned
across small memories to
form tiles

• Inter-tile communication is
scheduled

• RTL synthesis performed on
resulting computation and
communication hardware

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.38

DeepC Compiler (cont.)

• Parallelizes compilation across multiple
tiles

• Orchestrates communication between
tiles

• Some dynamic (data dependent) routing
possible

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.39

Control FSM

• Result for each tile is a
datapath, state machine,
and memory block

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.40

• Higher Language Abstraction
• Reconfigurable fabrics benefit from

specialization
• One opportunity is bitwidth optimization

• During C to FPGA conversion consider
operand widths
• Requires checking data dependencies
• Must take worst case into account
• Opportunity for significant gains for Booleans

and loop indices
• Focus here is on specialization

Bit-width Analysis

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.41

• Example
int a;
unsigned b;
a = random();
b = random();

a = a / 2;

b = b >> 4;

a = random() & 0xff;

a: 32 bits b: 32 bits

a: 31 bits b: 32 bits

a: 31 bits b: 28 bits

Arithmetic Analysis

a: 8 bits b: 28 bits

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.42

• Applicable to for loop induction variables.
• Example

int i;

for (i = 0; i < 6; i++) {
…

}

i: 32 bits

i: 3 bits

i: 3 bits

Loop Induction Variable Bounding

8

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.43

• Multimedia codes often simulate saturating
instructions

• Example
int valpred

if (valpred > 32767)
valpred = 32767

else if (valpred < -32768)
valpred = -32768

valpred: 32 bits

valpred: 16 bits

Clamping Optimization

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.44

• Sum all the contributions together, and take the
data-range union with the initial value

• Can easily find conservative range of <0,510>

a = 0 <0,0>
for i = 1 to 10
a = a + 1 <1,460>
for j = 1 to 10

a = a + 2 <3,480>
for k = 1 to 10

a = a + 3 <24,510>
...= a + 4 <510,510>

Solving the Linear Sequence

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.45

A
re

a
(C

LB
 c

ou
nt

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ad
pc

m
(8

)

bu
bb

le
so

rt
(3

2)

co
nv

ol
ve

 (1
6)

hi
st

og
ra

m
 (1

6)

in
tfi

r(
32

)

in
tm

at
m

ul
(1

6)

ja
co

bi
(8

)

lif
e

(1
)

m
ed

ia
n

(3
2)

m
pe

gc
or

r(
16

)

ne
w

lif
e

(1
)

pa
rit

y
(3

2)

pm
at

ch
(3

2)

so
r(

32
)

A
re

a
(C

LB
 c

ou
nt

)

Without bitwise With bitwise

FPGA Area Savings

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.46

Summary

• High-level is still not well understood for
reconfigurable computing

• Difficult issue is parallel specification and
verification

• Designers efficiency in RTL specification is
quite high. Do we really need better high-level
compilation?

