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Project Deliverables

• Final presentation [15-25 min]
• Aim for 80-100% project completeness
• Outline it as an extension of your report:

• Motivation and related work
• Analysis and approach taken
• Experimental results and summary of findings
• Conclusions / next steps

• Consider details that will be interesting / relevant for the 
expected audience

• Final report [8-12 pages] 
• More thorough analysis of related work
• Minimal focus on project goals and organization
• Implementation details and results
• See proceedings of FCCM/FPGA/FPL for inspiration
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• Processors efficient at sequential codes, 
regular arithmetic operations

• FPGA efficient at fine-grained parallelism, 
unusual bit-level operations

• Tight-coupling important: allows sharing of 
data/control

• Efficiency is an issue:
• Context-switches
• Memory coherency
• Synchronization

Recap – Reconfigurable Coprocessing
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b31 b0
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Instruction Augmentation

• Processor can only describe a small number 
of basic computations in a cycle 
• I bits  ->   2I operations

• Many operations could be performed on 2 
W-bit words

• ALU implementations restrict execution of 
some simple operations
• e. g. bit reversal

CprE 583 – Reconfigurable ComputingNovember 28, 2006 Lect-25.6

Recap – PRISC [RazSmi94A] 

• Architecture:
• couple into register file as “superscalar”

functional unit
• flow-through array (no state)
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Recap – Chimaera Architecture

• Live copy of register file values feed into array
• Each row of array may compute from register 

of intermediates
• Tag on array to indicate RFUOP
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PipeRench Architecture

• Many application are primarily linear 
• Audio processing
• Modified video processing
• Filtering

• Consider a “striped” architecture which can be very 
heavily pipelined
• Each stripe contains LUTs and flip flops
• Datapath is bit-sliced
• Similar to Garp/Chimaera but standalone

• Compiler initially converts dataflow application into a 
series of stripes

• Run-time dynamic reconfiguration of stripes if 
application is too big to fit in available hardware
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PipeRench Internals
• Only multi-bit functional units used
• Very limited resources for interconnect to neighboring 

programming elements
• Place and route greatly simplified
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PipeRench Place-and-Route

• Since no loops and linear data flow used, first step is to 
perform topological sort

• Attempt to minimize critical paths by limiting NO-OP 
steps

• If too many trips needed, temporally as well as spatially 
pipeline
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CUSTOM:
PipeRench Fabric

STANDARD CELLS:
Virtualization & Interface Logic

Configuration Cache
Data Store Memory

STRIPE

PE

• 3.6M transistors
• Implemented in a 
commercial 0.18μ, 6 
metal layer technology
• 125 MHz core speed
(limited by control logic)
• 66 MHz I/O Speed
• 1.5V core, 3.3V I/O

PipeRench Prototypes
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Parallel Computation

• What would it take to let the processor and 
FPGA run in parallel?

Modern Processors

Deal with:
• Variable data delays
• Dependencies with data
• Multiple heterogeneous functional units
Via:
• Register scoreboarding
• Runtime data flow (Tomasulo)
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OneChip

• Want array to have direct memory→memory
operations

• Want to fit into programming model/ISA
• Without forcing exclusive processor/FPGA 

operation
• Allowing decoupled processor/array execution

• Key Idea:
• FPGA operates on memory→memory regions
• Make regions explicit to processor issue
• Scoreboard memory blocks
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OneChip Pipeline
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• Basic Operation is:
• FPGA MEM[Rsource]→MEM[Rdst]

• block sizes powers of 2

• Supports 14 “loaded” functions
• DPGA/contexts so 4 can be cached

• Fits well into soft-core processor model

OneChip Instructions
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OneChip (cont.)

• Basic op is: FPGA MEM→MEM
• No state between these ops
• Coherence is that ops appear sequential
• Could have multiple/parallel FPGA compute 

units
• Scoreboard with processor and each other

• Single source operations?
• Can’t chain FPGA operations? 
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0x1000

0x10000
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Proc

Indicates usage of data pages like
virtual memory system!

OneChip Extensions

• FPGA operates on certain memory 
regions only

• Makes regions explicit to processor issue
• Scoreboard memory blocks
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Shadow Registers

• Reconfigurable functional units require 
tight integration with register file

• Many reconfigurable operations require 
more than two operands at a time
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Multi-Operand Operations

• What’s the best speedup that could be 
achieved?
• Provides upper bound

• Assumes all operands available when needed
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Additional Register File Access

• Dedicated link – move 
data as needed
• Requires latency

• Extra register port –
consumes resources
• May not be used often

• Replicate whole (or 
most) of register file
• Can be wasteful
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Shadow Register Approach

• Small number of registers needed (3 or 4)
• Use extra bits in each instruction
• Can be scaled for necessary port size
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Shadow Register Approach (cont.)

• Approach 
comes 
within 89% 
of ideal for 
3-input 
functions

• Paper also 
shows 
supporting 
algorithms 
[Con99A]
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Summary

• Many different models for co-processor 
implementation
• Functional unit
• Stand-alone co-processor

• Programming models for these systems is a 
key

• Recent compiler advancements open the 
door for future development

• Need tie in with applications
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Outline

• Recap
• High-Level FPGA Compilation

• Issues
• Handel-C
• DeepC
• Bit-width Analysis
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Overview

• High-level language to FPGA an 
important research area

• Many challenges
• Commercial and academic projects

• Celoxica
• DeepC
• Stream-C

• Efficiency still an issue
• Most designers prefer to get better 

performance and reduced cost
• Includes incremental compile and 

hardware/software codesign
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Issues

• Languages
• Standard FPGA tools operate on Verilog/VHDL
• Programmers want to write in C

• Compilation Time
• Traditional FPGA synthesis often takes hours/days
• Need compilation time closer to compiling for 

conventional computers
• Programmable-Reconfigurable Processors

• Compiler needs to divide computation between 
programmable and reconfigurable resources

• Non-uniform target architecture
• Much more variance between reconfigurable 

architectures than current programmable ones
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Why Compiling C is Hard

• General language
• Not designed for describing hardware
• Features that make analysis hard

• Pointers
• Subroutines
• Linear code

• C has no direct concept of time
• C (and most procedural languages) are 

inherently sequential
• Most people think sequentially
• Opportunities primarily lie in parallel data
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Notable Platforms

• Celoxica – Handel-C
• Commercial product targeted at FPGA community
• Requires designer to isolate parallelism
• Straightforward vision of scheduling

• DeepC
• Completely automated – no special actions by designer
• Ideal for data parallel operation
• Fits well with scalable FPGA model

• Stream-C 
• Computation model assumes communicating processes
• Stream based communication
• Designer isolates streams for high bandwidth
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Control statements
(if, switch, case, etc.)

Integer Arithmetic
Functions
Pointers

Basic types
(Structures, Arrays etc.)

#define
#include

Parallelism
Timing

Interfaces
Clocks

Macro pre-processor
RAM/ROM

Shared expression
Communications

Handel-C libraries
FP library

Bit manipulation

Recursion
Side effects

Standard libraries
Malloc

Software-only 
ANSI-C constructs

Majority of ANSI-C 
constructs supported by DK

Handel-C
Additions for hardware

Celoxica Handel-C

• Handel-C adds constructs to ANSI-C to enable 
hardware implementation
• Synthesizable HW programming language based on C
• Implements C algorithm direct to optimized FPGA or 

RTL
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Fundamentals

• Language extensions for hardware 
implementation as part of a system level 
design methodology
• Software libraries needed for verification

• Extensions enable optimization of timing and 
area performance

• Systems described in ANSI-C can be 
implemented in software and hardware using 
language extensions defined in Handel-C to 
describe hardware

• Extensions focused towards areas of 
parallelism and communication
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• Handel-C has one basic type - integer
• May be signed or unsigned
• Can be any width, not limited to 8, 16, 32 etc.

Variables are mapped to hardware registers

void main(void)
{

unsigned 6 a;
a=45;

}

1 0 1 1 0 1 = 0x2da =

LSBMSB

Variables
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index = 0;                     // 1 Cycle
while (index < length){

if(table[index] = key)
found = index;     // 1 Cycle

else
index = index+1;   // 1 Cycle

}
}

• Assignments and delay statements take 1 clock cycle
• Combinatorial Expressions computed between clock 

edges
• Most complex expression determines clock period
• Example: takes 1+n cycles (n is number of iterations)

Timing Model
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Parallel Block

// 1 Clock Cycle
par{

a=1;
b=2;
c=3;

}

Parallel code
par(i=0;i<10;i++)
{

array[i]=0;
}

Parallelism

• Handel-C blocks are by default sequential
• par{…} executes statements in parallel
• Par block completes when all statements complete

• Time for block is time for longest statement
• Can nest sequential blocks in par blocks

• Parallel version takes 1 clock cycle
• Allows trade-off between hardware size and performance
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{
…
c?b;  //read c to b
…

}

{
…
c!a+1;  //write a+1 to c
…

}

Chan unsigned 6 c;

c
a b

Channels
• Allow communication and synchronization between two parallel 

branches
• Semantics based on CSP (used by NASA and US Naval Research 

Laboratory) 
• Unbuffered (synchronous) send and receive

• Declaration
• Specifies data type to be communicated
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• A signal behaves like a wire - takes the value assigned to it 
but only for that clock cycle
• The value can be read back during the same clock cycle
• The signal can also be given a default value

// Breaking up complex expressions
int 15 a, b;
signal <int> sig1;
static signal <int> sig2=0; 
a = 7;
par
{

sig1 = (a+34)*17;
sig2 = (a<<2)+2;
b = sig1 + sig2;

}

Signals
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• Functions provide a means of sharing hardware for 
expressions

• By default, compiler generates separate hardware for 
each expression 
• Hardware is idle when control flow is elsewhere in the 

program
• Hardware function body is shared among call sites

{…
x= x*a + b;
y= y*c + d;

}

int mult_add(int z,c1,c2){
return z*c1 + c2; }

{
…
x= mult_add(x,a,b);
y= mult_add(y,c,d);

}

Sharing Hardware for Expressions
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DeepC Compiler

• Consider loop based 
computation to be memory 
limited

• Computation partitioned 
across small memories to 
form tiles

• Inter-tile communication is 
scheduled

• RTL synthesis performed on 
resulting computation and 
communication hardware
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DeepC Compiler (cont.)

• Parallelizes compilation across multiple 
tiles

• Orchestrates communication between 
tiles

• Some dynamic (data dependent) routing 
possible
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Control FSM

• Result for each tile is a 
datapath, state machine, 
and memory block
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• Higher Language Abstraction
• Reconfigurable fabrics benefit from 

specialization
• One opportunity is bitwidth optimization

• During C to FPGA conversion consider 
operand widths
• Requires checking data dependencies
• Must take worst case into account
• Opportunity for significant gains for Booleans 

and loop indices
• Focus here is on specialization

Bit-width Analysis
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• Example
int a;
unsigned b;
a = random();
b = random();

a = a / 2;      

b = b >> 4;

a = random() & 0xff;

a: 32 bits  b: 32 bits

a: 31 bits  b: 32 bits

a: 31 bits  b: 28 bits

Arithmetic Analysis

a: 8  bits  b: 28 bits
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• Applicable to for loop induction variables.
• Example

int i;

for (i = 0; i < 6; i++) {
…

}

i: 32 bits

i: 3 bits

i: 3 bits

Loop Induction Variable Bounding
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• Multimedia codes often simulate saturating 
instructions

• Example
int valpred

if (valpred > 32767)
valpred = 32767

else if (valpred < -32768)
valpred = -32768

valpred: 32 bits

valpred: 16 bits

Clamping Optimization
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• Sum all the contributions together, and take the 
data-range union with the initial value

• Can easily find conservative range of <0,510>

a = 0 <0,0>
for i = 1 to 10
a = a + 1 <1,460>
for j = 1 to 10

a = a + 2 <3,480>
for k = 1 to 10

a = a + 3 <24,510>
...= a + 4 <510,510> 

Solving the Linear Sequence
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Summary

• High-level is still not well understood for 
reconfigurable computing

• Difficult issue is parallel specification and 
verification

• Designers efficiency in RTL specification is 
quite high. Do we really need better high-level 
compilation?


