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CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #26 – Course Wrapup
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Control statements
(if, switch, case, etc.)

Integer Arithmetic
Functions
Pointers

Basic types
(Structures, Arrays etc.)

#define
#include

Parallelism
Timing

Interfaces
Clocks

Macro pre-processor
RAM/ROM

Shared expression
Communications

Handel-C libraries
FP library

Bit manipulation

Recursion
Side effects

Standard libraries
Malloc

Software-only 
ANSI-C constructs

Majority of ANSI-C 
constructs supported by DK

Handel-C
Additions for hardware

Celoxica Handel-C

• Handel-C adds constructs to ANSI-C to enable 
hardware implementation
• Synthesizable HW programming language based on C
• Implements C algorithm direct to optimized FPGA or 

RTL
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Fundamentals

• Language extensions for hardware 
implementation as part of a system level 
design methodology
• Software libraries needed for verification

• Extensions enable optimization of timing and 
area performance

• Systems described in ANSI-C can be 
implemented in software and hardware using 
language extensions defined in Handel-C to 
describe hardware

• Extensions focused towards areas of 
parallelism and communication

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.5

• Handel-C has one basic type - integer
• May be signed or unsigned
• Can be any width, not limited to 8, 16, 32 etc.

Variables are mapped to hardware registers

void main(void)
{

unsigned 6 a;
a=45;

}

1 0 1 1 0 1 = 0x2da =

LSBMSB

Variables
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index = 0;                     // 1 Cycle
while (index < length){

if(table[index] = key)
found = index;     // 1 Cycle

else
index = index+1;   // 1 Cycle

}
}

• Assignments and delay statements take 1 clock cycle
• Combinatorial Expressions computed between clock 

edges
• Most complex expression determines clock period
• Example: takes 1+n cycles (n is number of iterations)

Timing Model
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Parallel Block

// 1 Clock Cycle
par{

a=1;
b=2;
c=3;

}

Parallel code
par(i=0;i<10;i++)
{

array[i]=0;
}

Parallelism

• Handel-C blocks are by default sequential
• par{…} executes statements in parallel
• Par block completes when all statements complete

• Time for block is time for longest statement
• Can nest sequential blocks in par blocks

• Parallel version takes 1 clock cycle
• Allows trade-off between hardware size and performance
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{
…
c?b;  //read c to b
…

}

{
…
c!a+1;  //write a+1 to c
…

}

Chan unsigned 6 c;

c
a b

Channels
• Allow communication and synchronization between two parallel 

branches
• Semantics based on CSP (used by NASA and US Naval Research 

Laboratory) 
• Unbuffered (synchronous) send and receive

• Declaration
• Specifies data type to be communicated
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• A signal behaves like a wire - takes the value assigned to it 
but only for that clock cycle
• The value can be read back during the same clock cycle
• The signal can also be given a default value

// Breaking up complex expressions
int 15 a, b;
signal <int> sig1;
static signal <int> sig2=0; 
a = 7;
par
{

sig1 = (a+34)*17;
sig2 = (a<<2)+2;
b = sig1 + sig2;

}

Signals
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• Functions provide a means of sharing hardware for 
expressions

• By default, compiler generates separate hardware for 
each expression 
• Hardware is idle when control flow is elsewhere in the 

program
• Hardware function body is shared among call sites

{…
x= x*a + b;
y= y*c + d;

}

int mult_add(int z,c1,c2){
return z*c1 + c2; }

{
…
x= mult_add(x,a,b);
y= mult_add(y,c,d);

}

Sharing Hardware for Expressions
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• Higher Language Abstraction
• Reconfigurable fabrics benefit from 

specialization
• One opportunity is bitwidth optimization

• During C to FPGA conversion consider 
operand widths
• Requires checking data dependencies
• Must take worst case into account
• Opportunity for significant gains for Booleans 

and loop indices
• Focus here is on specialization

Bit-width Analysis
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• Example
int a;
unsigned b;
a = random();
b = random();

a = a / 2;      

b = b >> 4;

a = random() & 0xff;

a: 32 bits  b: 32 bits

a: 31 bits  b: 32 bits

a: 31 bits  b: 28 bits

Arithmetic Analysis

a: 8  bits  b: 28 bits
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• Applicable to for loop induction variables.
• Example

int i;

for (i = 0; i < 6; i++) {
…

}

i: 32 bits

i: 3 bits

i: 3 bits

Loop Induction Variable Bounding
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• Multimedia codes often simulate saturating 
instructions

• Example
int valpred

if (valpred > 32767)
valpred = 32767

else if (valpred < -32768)
valpred = -32768

valpred: 32 bits

valpred: 16 bits

Clamping Optimization
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• Sum all the contributions together, and take the 
data-range union with the initial value

• Can easily find conservative range of <0,510>

a = 0 <0,0>
for i = 1 to 10
a = a + 1 <1,460>
for j = 1 to 10

a = a + 2 <3,480>
for k = 1 to 10

a = a + 3 <24,510>
...= a + 4 <510,510> 

Solving the Linear Sequence
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FPGA Area Savings
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Summary

• High-level is still not well understood for 
reconfigurable computing

• Difficult issue is parallel specification and 
verification

• Designers efficiency in RTL specification is 
quite high. Do we really need better high-level 
compilation?
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Some Emerging Technologies

• Several emerging technologies may make an 
impact
• Carbon nanotubes
• Magnetoelectronic devices

• Technologies are in their infancy
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SWNT (Single Wall 
Carbon Nanotubes)

• Nanometer(s) in 
diameter
• microns long
• good conductors

• Extensions of carbon 
molecules

• Grown as long straight 
tubes

• “Flow” used to align 
nanotubes in a specific 
direction

• Technology still in 
infancy

Carbon Nanotubes
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Bottom-Up Self-Assembly

• We can’t make nano-circuits top-down
• Lithography can’t get to the nano scale

• Make them bottom-up with chemical self-
assembly
• Their own physical properties keep them in 

regular order, much like crystals do when 
they grow

• Fluid flow 
self-assembly
• Crossbar generated in 

two passes
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Nanotubes in Electronics?

• Carbon nanotubes come in two flavors:
• Metallic
• Semiconducting

• Metallic nanotubes make great wires
• Semiconducting nanotubes can be made into 

transistors
• Depending on how nanotubes are formed, 

range from about 1/3 semiconducting, 2/3 
metallic to 2/3 semiconducting, 1/3 metallic

• No good technology at present time for 
creating nanotubes of just one type
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Diode FET

Possible Devices

• Diode connection formed by making 
connection between upper and lower nanotube

• Nanotubes do not touch when forming a FET
• Top nanotube covered with oxide
• Effectively acts as a “gate” to current path
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Diode Logic

• Arise directly from 
touching NW/NTs

• Passive logic
• Non-restoring
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• Use FET 
connections to 
build restoring
gates

• Static load
• Like NMOS 

(PMOS)

PMOS-like Restoring FET Logic
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Programmed FET Arrays
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Programmable OR-plane

• Addressing is a challenge since order of addresses can’t 
be predetermined
• Nanotubes can be doped to form different 

addresses
• Some redundancy OK

• Diode logic formed at crosspoint
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Simple Nanowire-Based PLA

NOR-NOR = AND-OR PLA Logic
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Defect Tolerance

All components (PLA, routing) interchangeable;
Allows local programming around faults
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Results [Deh05A]

• Pair of 60-term OR 
planes roughly same 
size as 4-LUT

• Special mapping and 
programming tools 
needed

• Fault tolerance a big 
issue
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• Program a cell by setting a directional magnetic 
field
• Programming current sets field

• Technique already heavily using in storage 
devices

• Flexible, reliable

• Advantages:
• Non-volatile
• Low power consumption

Magnetoelectronic Devices
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Device structure

HHE integrated with CMOS logic

HHE Devices

• Information written as 
magnetization states by 
passing a write current 
through a current line

• HIGH, and LOW output Hall 
voltage according to direction 
of magnetization.

• Good remanence in the 
ferromagnet may lead to 
hysteresis loop and hence 
memory

• Easily integrated with rest of 
the CMOS circuit
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• Use storage cell along with a minimum of 
external transistors to create logic

• External circuitry induces current which can 
program cell

• Variety of different functions can be 
implemented

Magnetoelectronic Gates
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Power Reducing

• Logic only evaluated if 
the output result will 
change state

• If change redetected 
then perform reset

• Otherwise, maintain old 
value
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• SRAM storage cell 
used for high 
performance

• Initial value of SRAM 
cell stored in 
magnetoelectronic cell

• Cell is programmed 
following reset

SRAM cell

Magnetoelectronic Look-up Tables
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• Difficult to explore without experts in physics 
and chemistry

• Initial architecture ideas based on perceptions 
of likely available technology

• Daunting challenges involving CAD and power 
reduction remain

• Not likely to have much commercial application 
for 10-15 years

• Active area of research

Summary


