
1

CprE / ComS 583
Reconfigurable Computing

Prof. Joseph Zambreno
Department of Electrical and Computer Engineering
Iowa State University

Lecture #26 – Course Wrapup

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.2

Quick Points

26
Sunday

Dead
Week

3

Finals
Week

10

17

26
Monday

4

11

18

Lect-25

28
Tuesday

Project
Seminars

(EDE)1

5

12

Electronic
Grades

Due

19

29
Wednesday

6

13

Lect-26

30
Thursday

Project
Seminars
(Others)

7

14

1
Friday

8

15

2
Saturday

9

Project
Write-ups
Deadline

16

December / November 2006

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.3

Control statements
(if, switch, case, etc.)

Integer Arithmetic
Functions
Pointers

Basic types
(Structures, Arrays etc.)

#define
#include

Parallelism
Timing

Interfaces
Clocks

Macro pre-processor
RAM/ROM

Shared expression
Communications

Handel-C libraries
FP library

Bit manipulation

Recursion
Side effects

Standard libraries
Malloc

Software-only
ANSI-C constructs

Majority of ANSI-C
constructs supported by DK

Handel-C
Additions for hardware

Celoxica Handel-C

• Handel-C adds constructs to ANSI-C to enable
hardware implementation
• Synthesizable HW programming language based on C
• Implements C algorithm direct to optimized FPGA or

RTL

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.4

Fundamentals

• Language extensions for hardware
implementation as part of a system level
design methodology
• Software libraries needed for verification

• Extensions enable optimization of timing and
area performance

• Systems described in ANSI-C can be
implemented in software and hardware using
language extensions defined in Handel-C to
describe hardware

• Extensions focused towards areas of
parallelism and communication

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.5

• Handel-C has one basic type - integer
• May be signed or unsigned
• Can be any width, not limited to 8, 16, 32 etc.

Variables are mapped to hardware registers

void main(void)
{

unsigned 6 a;
a=45;

}

1 0 1 1 0 1 = 0x2da =

LSBMSB

Variables

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.6

index = 0; // 1 Cycle
while (index < length){

if(table[index] = key)
found = index; // 1 Cycle

else
index = index+1; // 1 Cycle

}
}

• Assignments and delay statements take 1 clock cycle
• Combinatorial Expressions computed between clock

edges
• Most complex expression determines clock period
• Example: takes 1+n cycles (n is number of iterations)

Timing Model

2

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.7

Parallel Block

// 1 Clock Cycle
par{

a=1;
b=2;
c=3;

}

Parallel code
par(i=0;i<10;i++)
{

array[i]=0;
}

Parallelism

• Handel-C blocks are by default sequential
• par{…} executes statements in parallel
• Par block completes when all statements complete

• Time for block is time for longest statement
• Can nest sequential blocks in par blocks

• Parallel version takes 1 clock cycle
• Allows trade-off between hardware size and performance

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.8

{
…
c?b; //read c to b
…

}

{
…
c!a+1; //write a+1 to c
…

}

Chan unsigned 6 c;

c
a b

Channels
• Allow communication and synchronization between two parallel

branches
• Semantics based on CSP (used by NASA and US Naval Research

Laboratory)
• Unbuffered (synchronous) send and receive

• Declaration
• Specifies data type to be communicated

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.9

• A signal behaves like a wire - takes the value assigned to it
but only for that clock cycle
• The value can be read back during the same clock cycle
• The signal can also be given a default value

// Breaking up complex expressions
int 15 a, b;
signal <int> sig1;
static signal <int> sig2=0;
a = 7;
par
{

sig1 = (a+34)*17;
sig2 = (a<<2)+2;
b = sig1 + sig2;

}

Signals

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.10

• Functions provide a means of sharing hardware for
expressions

• By default, compiler generates separate hardware for
each expression
• Hardware is idle when control flow is elsewhere in the

program
• Hardware function body is shared among call sites

{…
x= x*a + b;
y= y*c + d;

}

int mult_add(int z,c1,c2){
return z*c1 + c2; }

{
…
x= mult_add(x,a,b);
y= mult_add(y,c,d);

}

Sharing Hardware for Expressions

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.11

• Higher Language Abstraction
• Reconfigurable fabrics benefit from

specialization
• One opportunity is bitwidth optimization

• During C to FPGA conversion consider
operand widths
• Requires checking data dependencies
• Must take worst case into account
• Opportunity for significant gains for Booleans

and loop indices
• Focus here is on specialization

Bit-width Analysis

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.12

• Example
int a;
unsigned b;
a = random();
b = random();

a = a / 2;

b = b >> 4;

a = random() & 0xff;

a: 32 bits b: 32 bits

a: 31 bits b: 32 bits

a: 31 bits b: 28 bits

Arithmetic Analysis

a: 8 bits b: 28 bits

3

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.13

• Applicable to for loop induction variables.
• Example

int i;

for (i = 0; i < 6; i++) {
…

}

i: 32 bits

i: 3 bits

i: 3 bits

Loop Induction Variable Bounding

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.14

• Multimedia codes often simulate saturating
instructions

• Example
int valpred

if (valpred > 32767)
valpred = 32767

else if (valpred < -32768)
valpred = -32768

valpred: 32 bits

valpred: 16 bits

Clamping Optimization

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.15

• Sum all the contributions together, and take the
data-range union with the initial value

• Can easily find conservative range of <0,510>

a = 0 <0,0>
for i = 1 to 10
a = a + 1 <1,460>
for j = 1 to 10

a = a + 2 <3,480>
for k = 1 to 10

a = a + 3 <24,510>
...= a + 4 <510,510>

Solving the Linear Sequence

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.16

A
re

a
(C

LB
 c

ou
nt

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000
ad

pc
m

(8
)

bu
bb

le
so

rt
(3

2)

co
nv

ol
ve

 (1
6)

hi
st

og
ra

m
 (1

6)

in
tfi

r(
32

)

in
tm

at
m

ul
(1

6)

ja
co

bi
(8

)

lif
e

(1
)

m
ed

ia
n

(3
2)

m
pe

gc
or

r(
16

)

ne
w

lif
e

(1
)

pa
rit

y
(3

2)

pm
at

ch
(3

2)

so
r(

32
)

A
re

a
(C

LB
 c

ou
nt

)
Without bitwise With bitwise

FPGA Area Savings

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.17

Summary

• High-level is still not well understood for
reconfigurable computing

• Difficult issue is parallel specification and
verification

• Designers efficiency in RTL specification is
quite high. Do we really need better high-level
compilation?

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.18

Some Emerging Technologies

• Several emerging technologies may make an
impact
• Carbon nanotubes
• Magnetoelectronic devices

• Technologies are in their infancy

4

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.19

SWNT (Single Wall
Carbon Nanotubes)

• Nanometer(s) in
diameter
• microns long
• good conductors

• Extensions of carbon
molecules

• Grown as long straight
tubes

• “Flow” used to align
nanotubes in a specific
direction

• Technology still in
infancy

Carbon Nanotubes

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.20

Bottom-Up Self-Assembly

• We can’t make nano-circuits top-down
• Lithography can’t get to the nano scale

• Make them bottom-up with chemical self-
assembly
• Their own physical properties keep them in

regular order, much like crystals do when
they grow

• Fluid flow
self-assembly
• Crossbar generated in

two passes

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.21

Nanotubes in Electronics?

• Carbon nanotubes come in two flavors:
• Metallic
• Semiconducting

• Metallic nanotubes make great wires
• Semiconducting nanotubes can be made into

transistors
• Depending on how nanotubes are formed,

range from about 1/3 semiconducting, 2/3
metallic to 2/3 semiconducting, 1/3 metallic

• No good technology at present time for
creating nanotubes of just one type

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.22

Diode FET

Possible Devices

• Diode connection formed by making
connection between upper and lower nanotube

• Nanotubes do not touch when forming a FET
• Top nanotube covered with oxide
• Effectively acts as a “gate” to current path

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.23

Diode Logic

• Arise directly from
touching NW/NTs

• Passive logic
• Non-restoring

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.24

• Use FET
connections to
build restoring
gates

• Static load
• Like NMOS

(PMOS)

PMOS-like Restoring FET Logic

5

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.25

Programmed FET Arrays

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.26

Programmable OR-plane

• Addressing is a challenge since order of addresses can’t
be predetermined
• Nanotubes can be doped to form different

addresses
• Some redundancy OK

• Diode logic formed at crosspoint

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.27

Simple Nanowire-Based PLA

NOR-NOR = AND-OR PLA Logic
CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.28

Defect Tolerance

All components (PLA, routing) interchangeable;
Allows local programming around faults

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.29

Results [Deh05A]

• Pair of 60-term OR
planes roughly same
size as 4-LUT

• Special mapping and
programming tools
needed

• Fault tolerance a big
issue

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.30

• Program a cell by setting a directional magnetic
field
• Programming current sets field

• Technique already heavily using in storage
devices

• Flexible, reliable

• Advantages:
• Non-volatile
• Low power consumption

Magnetoelectronic Devices

6

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.31

Device structure

HHE integrated with CMOS logic

HHE Devices

• Information written as
magnetization states by
passing a write current
through a current line

• HIGH, and LOW output Hall
voltage according to direction
of magnetization.

• Good remanence in the
ferromagnet may lead to
hysteresis loop and hence
memory

• Easily integrated with rest of
the CMOS circuit

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.32

• Use storage cell along with a minimum of
external transistors to create logic

• External circuitry induces current which can
program cell

• Variety of different functions can be
implemented

Magnetoelectronic Gates

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.33

Power Reducing

• Logic only evaluated if
the output result will
change state

• If change redetected
then perform reset

• Otherwise, maintain old
value

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.34

• SRAM storage cell
used for high
performance

• Initial value of SRAM
cell stored in
magnetoelectronic cell

• Cell is programmed
following reset

SRAM cell

Magnetoelectronic Look-up Tables

CprE 583 – Reconfigurable ComputingNovember 30, 2006 Lect-26.35

• Difficult to explore without experts in physics
and chemistry

• Initial architecture ideas based on perceptions
of likely available technology

• Daunting challenges involving CAD and power
reduction remain

• Not likely to have much commercial application
for 10-15 years

• Active area of research

Summary

